Abstract:
Systems and methods for implementing array cameras configured to perform super-resolution processing to generate higher resolution super-resolved images using a plurality of captured images and lens stack arrays that can be utilized in array cameras are disclosed. Lens stack arrays in accordance with many embodiments of the invention include lens elements formed on substrates separated by spacers, where the lens elements, substrates and spacers are configured to form a plurality of optical channels, at least one aperture located within each optical channel, at least one spectral filter located within each optical channel, where each spectral filter is configured to pass a specific spectral band of light, and light blocking materials located within the lens stack array to optically isolate the optical channels.
Abstract:
A portable, aerial, dual-swath photogrammetric imaging system comprising twin nadir pointing CCD cameras for simultaneously acquiring twin adjacent digital images for merging into a large panorama. A pair of lens shifters symmetrically shift twin images to the left and right sides of the focal points of two parallel lenses to extend imaging swathwidth. The twin adjacent images of the imaging system have a strip of narrow overlap at the center of the whole scene that are reserved for photogrammetric processing and stitching twin images into a seamless panorama. Each camera is connected to an embedded computer which controls imaging data acquisition, attaches GPS/IMU measurements, generates KML metadata files for its snapshots, and stores acquired images and metadata into removable SSDs. Direct geo-referenced panoramic digital stills are immediately registered on to Google™ Earth precisely. Its images can be further processed for advanced mapping, change detection and GIS applications.
Abstract:
An image-signal processor may be provided to support CCD image sensors. A timing generator may provide timing signals to CCD image sensors, to enable each of the CCD image sensors to output captured-image data in form of an analog signal that a corresponding A/D converter converts into a CYMG signal. Image-processing parts may receive the CYMG image signal from the A/D converter and convert the CYMG image signal into an YCbCr signal. An image-combination part may combine horizontally or vertically images in form of the YCbCr signal into a combination image and store the combination image in an internal memory, and scale down horizontally or vertically the combination image while reading out the combination image from the internal memory, storing the scaled-down combination image in an external memory, and outputting the scaled-down combination image in form of an YCbCr signal.
Abstract:
Digital camera systems and methods are described that provide a color digital camera with direct luminance detection. The luminance signals are obtained directly from a broadband image sensor channel without interpolation of RGB data. The chrominance signals are obtained from one or more additional image sensor channels comprising red and/or blue color band detection capability. The red and blue signals are directly combined with the luminance image sensor channel signals. The digital camera generates and outputs an image in YCrCb color space by directly combining outputs of the broadband, red and blue sensors.
Abstract:
An image pickup apparatus and method is disclosed by which moving pictures of a high frame rate can be displayed. The image pickup apparatus for picking up moving pictures, includes: a distribution section for distributing light incoming through an optical lens to n directions; n image pickup elements for converting the light distributed by the distribution section into signals at time intervals of 1/m second to pick up images; and a control section for controlling timings at which the light is to be converted into the signals by the image pickup elements; the control section controlling the n image pickup elements to convert the light into the signals at timings successively displaced by 1/m×n second to pick up images.
Abstract:
An improved intraoral x-ray system that includes a dental tray with the shape of a dental arch and can be positioned within the oral cavity, for accommodating image detectors at the lingual (or, palatal) side of the tray; an image processing system, situated external to said oral cavity, for converting the image data detected by the image detector to a viewable image; a mechanism for transferring the image data to the image processing system; and a display unit for displaying the image.
Abstract:
Electronic devices may include array cameras having lens arrays, an corresponding color filter arrays, and corresponding image sensor arrays. Lenses in lens arrays may be aligned with positions on associated image sensors other than the centers of the associated image sensors. Lens arrays may include one or more layers of lenses formed by compression molding of transparent materials such as plastic. Lens arrays may be mounted directly onto integrated circuit dies on which the image sensor arrays are formed. Color filter arrays may include one or more red filters, one or more green filters and one or more blue filters. Offsetting the centers of lenses with respect to the centers of associated image sensors may allow capture of spatially offset single-color images by the image sensors. Spatially offset single-color images may be combined into super-resolution images using the processing circuitry.
Abstract:
A multi-channel imaging device is provided. The multi-channel imaging device includes a focal plane array having an array of pixels configured to detect radiation in a predetermined wavelength band. Subsets of the array of pixels are arranged to define a plurality of unit cell image areas. The multi-channel imaging device also includes a lens array having a plurality of lens elements configured to image a scene onto the plurality of unit cell image areas. The lens elements and the unit cell image areas define a plurality of unit cells having at least one lens element and at least one unit cell image area. Each of the plurality of unit cells is configured to create a complete image of the scene. Additionally, a plurality of unit cell filters corresponding to the plurality of unit cells is configured to filter radiation such that each unit cell is dedicated to an image channel is also provided.
Abstract:
A pixel output line (14) is independently provided for each of the pixels arranged in a two-dimensionally array within a pixel area so that pixel signals can be sequentially written in a plurality of memory sections (22) through the pixel output lines (14). When a plurality of frames of pixel signals are held in the memory sections (22), the pixel signals corresponding to two arbitrarily selected frames are read and respectively stored in sample-and-hold circuits (61 and 62), and their difference is obtained. Then, the difference signals corresponding to a predetermined range of the image are integrated, and the integrated value is compared with a threshold. If the integrated value exceeds the threshold, it is presumed that a change in an imaging object has occurred, and a pulse generation circuit (66) generates a trigger signal. By controlling the discontinuation and other imaging actions according to this trigger signal, it is possible to correctly take high-speed images of the situation before or after the occurrence of an objective phenomenon.
Abstract:
An optical filter array (2) having a plurality of optical filters (2a to 2d) and a light shielding block (6) having light shielding walls (61a to 61d) forming a plurality of openings (6a to 6d) independent from each other are placed between a lens module (7) integrally having a plurality of lenses (1a to 1d) arranged on a single plane and a plurality of imaging regions (4a to 4d). The light shielding block is provided with first sliding surfaces (66 to 69). The lens module is provided with second sliding surfaces (56 to 59) sliding on the first sliding surfaces so that the lens module can rotate with respect to the light shielding block with an axis normal to the plurality of imaging regions as a rotation center axis. Thus, a small, thin, and low-cost compound eye camera module can be realized.