Abstract:
The power conversion system allows for multiple segregated and ground independent power sources to provide redundant power to modules within an electronics equipment cabinet with increased reliability and reduced sensitivity to common fault propagation. The power conversion system provides power conditioning modules having independent supply rails that supply power to each module within an electronics equipment cabinet. FET and diode solid-state control and driver logic enable each individual supply rail. Efficient power distribution is facilitated by primary and hot-backup operation of one or more power conditioning modules. Power conversion is facilitated by one or more input supply power feeds and one or more converter stages.
Abstract:
Provided are a power storage apparatus and a method of controlling the power storage apparatus. The power storage apparatus stores power supplied from a power generation system or a power grid. The power storage apparatus supplies stored power to a load during an electric failure, and supplies stored power to the power grid. The power storage apparatus includes at least one battery cell, a battery management unit coupled to the battery cell, a bi-directional converter coupled to the battery management unit, a bi-directional inverter coupled between the bi-directional converter and the power grid, and a central controller controlling the operations of the bi-directional converter, the bi-directional inverter, and the battery management unit. An uninterruptible power supply (UPS) function may be performed to stabilize the power storage system including the power storage apparatus.
Abstract:
A power supply system is disclosed. The system comprises an AC power source from a power grid and a DC power source from an alternative power generation system. The alternative power generation system may comprise one or a plurality of solar systems. The system may also comprise one or a plurality of wind turbines. The AC power generated by a generator of the turbine is converted into the DC power by a device comprising a rectifier. There are two groups of electrical appliances connected to the system. The first group receives the AC power only and the second group receives the AC and/or the DC power supplies. The power supply system provides a means of supplying the electrical appliances the DC power with the higher priority and therefore minimizes power consumption from the power grid.
Abstract:
A power converter that gives priority to the high power output and only provides power to the low power output when the total potential output power is equal to or less than the rated power of the power converter. A specific power threshold is established, and when the high power output remains below this threshold for a period of time the low power output is allowed to turn on. If the high power output subsequently exceeds this threshold for a period of time, then an electronic circuit powers down the low power output in order to keep the total output power below the rated power of the power converter. Subsequently, the high power output is checked against the threshold to determine if the low power output can be turned on again. If the high power output is below the threshold, then the low power output is turned on.
Abstract:
A system is disclosed for charging or billing for access to wireless power. The device requiring power communicates with the power provider and the billing method is determined. A consumer may be required to provide billing information, or if the billing information is already associated with an existing account, the consumer account is automatically charged for the wireless power. The account may include prepaid charging minutes that are debited as wireless power is provided, or the account may be billed for the wireless power that is provided. The charging/billing for the wireless power may be used to receive value for the power that is provided, while remaining consumer friendly.
Abstract:
A system and method for preventing over voltages in a power system coupled to an electric machine are disclosed. Briefly described, one embodiment is a method comprising detecting an operating voltage on a high voltage direct current (HVDC) bus, determining if at least one component of the power system is operational, communicating a signal to a power converter of the power system when the detected operating voltage is greater than a threshold voltage and when the component is not operational, and shorting together a plurality of terminals of the electric machine.
Abstract:
The present relates to a system and method for dynamic power management of a mobile device. The mobile device has a plurality of loads and a battery charger electrically connected to a voltage rail. The method comprises monitoring the plurality of loads to determine when at least one of the loads will become active or inactive, determining a minimum required output voltage level to be provided by the voltage converter based on active loads and the at least one load that will become active or inactive and device operation; and adjusting an input voltage level via the voltage converter to provide the minimum required output voltage level on the voltage rail in advance of the at least one load becoming active or after the at least one load becomes inactive. The method further monitors the input voltage level, and determines whether the input voltage level is below a first predetermine threshold. When the input voltage level falls below the first threshold, the method reduces the output voltage level provided by the voltage converter thereby reducing a charging rate of the battery charger.
Abstract:
Energy harvesting devices provide power to devices of emergency equipment stations (e.g., fire extinguisher station, fire alarm pull station, defibrillator station, etc.) distributed throughout a facility to monitor one or more internal or external conditions (e.g., identifiable objects detected near the station, presence of an obstruction restricting access to the station, etc.) and relay information about the monitored conditions to a central station.
Abstract:
A system and method for preventing over voltages in a power system coupled to an electric machine are disclosed. Briefly described, one embodiment is a method comprising detecting an operating voltage on a high voltage direct current (HVDC) bus, determining if at least one component of the power system is operational, communicating a signal to a power converter of the power system when the detected operating voltage is greater than a threshold voltage and when the component is not operational, and shorting together a plurality of terminals of the electric machine.
Abstract:
A system and method are provided for displaying electronic devices operable when electrical power is supplied to them at respective operating voltages through respective power connectors. The system has a power supply providing input electrical current at a first voltage and cable structures each connected with the power supply and having a respective power connector electrically connecting with the power receiving structure of one of the electronic devices. The cable structures each include a voltage regulator system that receives the input electrical current, converts it to an output electrical current at an output voltage, and transmits it to the power connector, so as to transmit an operating electrical current to the associated electronic device. The voltage regulator system sets the output voltage of the output electrical current such that the operating electrical current delivered to the associated electronic device has a voltage that corresponds to the operating voltage of that device. This is accomplished by connecting the voltage regulator to a calibrating component with a selected electrical characteristic that sets the output voltage. A security circuit creates an alarm when separation of the electrical device from the system occurs.