Abstract:
Apparatus for monitoring the temperature of a high voltage conductor includes an electrically and thermally conductive fixture for attachment to a high voltage conductor, and a high voltage insulator having a high voltage end and a reference potential end. The insulator is connected at the high voltage end to the fixture. The insulator contains a fiber optic cable in a fiber optic cable passageway from the reference potential end to the high voltage end. The cable extends beyond the insulator. An optical temperature sensor head is optically coupled to the cable the high voltage end. The sensor head includes a sensor crystal which transmits light that varies with temperature of the sensor crystal. An electrically and thermally conductive enclosure enclosing the sensor head is supported in the fixture for thermally conductive contact with the high voltage conductor effective to couple the temperature of the high voltage conductor to the sensor crystal. An optoelectrical unit powers and detects the optic signal carrying the information about the temperature of the high voltage conductor.
Abstract:
Embodiments of the invention provide an improved method and apparatus for sensing position and/or status of an object. For one embodiment, a method generally includes illuminating the object with an optical pulse source and supplying a first optical pulse to a photo-detector, causing a resonant circuit formed by the photo-detector and an inductor to generate a resonant signal. The method also includes supplying at least a second optical pulse to the photo-detector causing a change in the resonant signal, wherein the second optical pulse is reflected from the object, monitoring the change in the resonant signal, and determining a position of the object based on the monitored change in the resonant signal. A velocity, direction of travel and/or acceleration of the object may also be determined from successive position measurements.
Abstract:
Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.
Abstract:
The invention relates to a pressure sensor comprising a housing (12), a membrane (26) arranged in said housing and which can be deflected by the pressure to be measured, a light source (LED) having an optical axis, a light detector having an optical axis and a light blocker (36) that is coupled to the membrane and that can be deflected thereby, the blocker being arranged in the beam path of the light source. The light source and the light detector are arranged inside the housing (12), wherein their optical axes lie parallel to one another. A first prism (40) is assigned to the light source and a second prism (42) is assigned to the light detector in such a way that an uninterrupted beam path from the light source through both prisms to the light detector is obtained. To this end, the light blocker (36) is arranged between the two prisms.
Abstract:
A high speed interface for optoelectronic devices is disclosed that includes a housing adapted to receive a distal end of a fiber having a slanted end face. The end face of the fiber is optically coupled to an optoelectronic device mounted in the housing. The fiber cladding between the optoelectronic device and the fiber core may be polished or etched to reduce the thickness of the cladding to reduce the separation distance between the optoelectronic device and the slanted end face of the fiber. The reduced separation distance improves the optical coupling efficiency between the end face of the fiber and the optoelectronic device.
Abstract:
An infrared radiation ear thermometer has an optical system, an infrared detector, an ambient temperature sensor, and display unit, a signal processing section. Wherein, the infrared detector further includes an infrared sensor and a temperature reference sensor; the infrared sensor is deposition on the substrate and the temperature reference sensor is mount near the substrate of the infrared detector to convert the infrared signal into an electrical signal and sense the reference temperature separately. The ambient temperature sensor is set in the space near the optical system to detect the fast change of the ambient temperature. The signal processing section receives the signals from these temperature sensors to produce an offset by a mathematical algorithm. The offset is used to correct the temperature reading and maintain a high precision even though the ear thermometer suffers from an extreme temperature change.
Abstract:
A deformation sensor is described which does not require a supplementary sensor to check functionality. This deformation sensor includes an optical transmission medium (nullM1, nullM2), multiple transmission elements (S1, S2), which couple the light of various wavelengths (null1, null2) into the transmission medium (nullM1, nullM2), and multiple reception elements (E1, E2), which selectively couple the transmitted light out of the transmission medium (nullM1, nullM2) according to wavelength. An evaluation unit (AW) detects deviations between the output signals (a1, a2) of the reception elements (E1, E2) and signals a malfunction of the sensor if the deviations exceed a preset measure.
Abstract:
With current WDM technology a plurality of individual data channels exist on each fiber. Each of these data channels must be individually monitored in these WDM systems to ensure data signal quality. Monitoring of these signals is accomplished with the use of an optical performance monitor (OPM). An accurate known reference source is required for the OPM to provide reliable monitoring of signal data. The invention couples a reference signal simultaneously with a data signal and provides this combined optical signal to an OPM monitor for the purpose of obtaining high accuracy wavelength data at low cost.
Abstract:
A coherent optical spectrum analyzer is provided in which an optical balancing tone having a specific signature is injected into a signal path of a balanced optical receiver. A measuring unit is provided to analyze the balancing tone component in the signal output from the balanced optical receiver and determine characteristics of the optical receiver. A compensation unit is provided for providing compensation to counter, or negate any imbalances determined via the measuring unit. The balanced optical receiver is preferably a polarization state independent optical receiver.
Abstract:
The present invention relates to an electro-optic probe, which includes the following components: a laser diode for emitting a modulating laser light according to control signals generated in a main body of the electro-optic sampling oscilloscope; a first lens for converting the modulating laser light to a parallel beam; a second lens for focusing the parallel beam; an opto-electronic element having a reflection film at a reflection-end; an isolator device disposed between the first lens and the second lens for transmitting the modulating laser light and separating a reflected beam produced at the reflection film into signal beams; and photo-diodes for converting optical energies of the signal beams separated by the isolator device into respective electrical signals; wherein, the signal beams to enter the photo-diodes are directed to propagate towards the laser diode, and the photo-diodes are disposed in a longitudinal direction of a probe casing.