Abstract:
Solutions to improve the properties of the phosphors and electroluminescent devices are described, using phosphors in combination with zeolites for converting UV or Blue radiation into visible radiation.
Abstract:
A plasma display panel including a transparent front substrate, a rear substrate disposed parallel to the front substrate, a barrier wall disposed between the front substrate and the rear substrate and defining light-emitting cells, address electrodes on the rear substrate and covered by a first dielectric layer, sustain electrode pairs extending in a direction orthogonal to a direction in which the address electrodes extend and covered by a second dielectric layer, red, green and blue phosphor layers coated on sides of the barrier wall and a surface of the first dielectric layer, and red, green and blue phosphor films formed on the second dielectric layer at regions corresponding to regions where the red, green and blue phosphor layers are formed.
Abstract:
A front and back glass substrates are placed on either side of a discharge spaces. A plurality of sustain electrode pairs extend in a row direction and are regularly arranged in a column direction on the front glass substrate. A dielectric layer covering the sustain electrode pairs is formed on the front glass substrate. A plurality of address electrodes initiating a discharge in conjunction with the sustain electrodes in each discharge cell formed in the discharge space extend in the column direction and are regularly arranged in the row direction. A first metallic partition wall unit defining the discharge cells is formed on the front glass substrate. A second metallic partition wall unit defining the discharge cells adjoined to the first partition wall unit is formed on the back glass substrate.
Abstract:
A blue-emitting phosphor is optimized by controlling mole fractions typically of Mg and Si in Sr3-eMgbSi2cO8d:Eue or by further including an optimal amount of at least one additional component such as Ba or Ca. The resulting phosphor exhibits a higher brightness and a higher color purity upon excitation by ultraviolet light emitted as a result of discharge of xenon gas. The optimized phosphor is incorporated into light emitting devices such as lamps and PDPs, and further into display devices.
Abstract translation:蓝色发光荧光体通过控制Sr 3-x N 2 Si 2 Si 2 O 2中典型的Mg和Si的摩尔分数来优化, 或通过进一步包含最佳量的至少一种另外的组分例如Ba或Ca。 所得到的荧光体在由于氙气的放电而发出的紫外光激发时,具有更高的亮度和较高的色纯度。 将优化的荧光体并入发光器件如灯和PDP中,并且进一步并入显示器件中。
Abstract:
A plasma display panel includes a front substrate, a back substrate facing the front substrate, and a plurality of discharge cells between the front substrate and the back substrate. Pairs of discharge electrodes oppose each other in a discharge cell to make a plasma discharge occur in the discharge cell, dielectric layers cover each pair of discharge electrodes, and a thickness of the dielectric layers covering the pairs of discharge electrodes is not uniform.
Abstract:
A phosphor layer is provided on a back glass substrate placed opposite a front glass substrate with a discharge space in between, and formed in a double-layer structure consisting of a first phosphor layer and a second phosphor layer having its surface covered by the first phosphor layer. The first phosphor layer is formed of materials that permit the passing-through of a xenon molecular beam but absorb a xenon resonance line in the vacuum ultraviolet light generated from a discharge gas by means of a discharge, and have a higher resistance to the resonance line than that of the second phosphor layer. The second phosphor layer is formed of materials that have, as compared with the first phosphor layer, a higher light-emission brightness based on the xenon molecular beam in the vacuum ultraviolet light generated from the discharge gas by means of the discharge.
Abstract:
A Plasma Display Panel (PDP) includes: a first substrate; a second substrate facing the first substrate; first barrier ribs, formed of a dielectric material and arranged between the first and second substrates, the first barrier ribs defining discharge cells with the first and second substrates; a phosphor layer arranged in the discharge cells; upper discharge electrodes arranged in the first barrier ribs and extending to surround the discharge cells; and lower discharge electrodes arranged in the first barrier ribs to be separated from the upper discharge electrodes, and extending to surround the discharge cells; wherein at least one of the upper and lower discharge electrodes includes discharge units that are respectively divided into plural pieces separated from each other to surround the discharge cells, and connection units electrically connecting the discharge units that respectively surround the neighboring discharge cells.
Abstract:
A plasma display panel decreases reflected luminance of external light and increase discharge efficiency. The plasma display panel may comprise, among other things, a second colored dielectric layer that covers the pair of the sustain electrodes, a fluorescent layer arranged inside each discharge cell; and discharge gas present in the discharge cells, wherein grooves are formed on the second dielectric layer and between the sustain electrode pairs.
Abstract:
The present invention relates to plasma display panel and manufacturing method thereof to simplify the manufacturing steps and reduce cost of production. In the present invention, a black layer formed between a transparent electrode and a bus electrode is formed together with a black matrix at the same time. In this case, the black layer is formed together with the black matrix in one. Cheap nonconductive oxide is used as a black powder of a black layer. Specifically, in case the black layer and the black matrix are formed in one, the bus electrode is shifted to a non-discharge area to improve the brightness of the plasma display panel.
Abstract:
The present invention relates to a plasma display panel and a manufacture method thereof in which a color mixture of emitted light can be prevented and a contrast characteristic can be improved. The plasma display panel includes: a first barrier rib for partitioning a plurality of sub-pixels; and a second barrier rib formed to function as a boundary between one unit pixel constituting of the plurality of sub-pixels and an adjacent unit pixel, and partition the unit pixels, wherein the second barrier rib has a greater width than the first barrier rib. The method includes the steps of: coating a first and second barrier rib paste on a dielectric material formed on a glass; and placing and exposing an irregular pattern mask on the first and second barrier rib paste to form a first barrier rib pattern and a second barrier rib pattern each having a different width.