Abstract:
An electron beam irradiation processing device including an electron beam tube and a current detection unit disposed outside of the window of the electron beam tube. The electron beam tube is adapted to radiate electron beams and has a window and an associated power-source unit that provides a power source. The current detection unit includes at least one of a conductor and a semiconductor covered by an insulating film, and an electron beam level measurement unit having a current measurement unit that measures the current flowing through the current detection unit. The amount of electron beams output from the electron beam tube is controlled by controlling the power-source unit as a function of the current flowing through the current detection unit. In addition, a method of measuring amount of electron beams radiated from an electron beam tube with a window including the steps of providing a current detection unit and measuring amount of electron beams radiated from the electron beam tube by measuring the current flowing through the current detection unit.
Abstract:
A lithographic projection device according to the present invention includes a first radiation source which supplies a projection beam of radiation of a first type, a mask table for holding a mask, a substrate table for holding a substrate and a projection system for imaging a portion of the mask, irradiated by the projection beam, onto a target portion of the substrate. Further, a second radiation source supplies a second beam of radiation of a second type which can be directed onto the substrate and a controller which patterns the second beam of radiation so that it impinges on the substrate in a particular pattern. The two radiation beams are controlled such that the sum of the fluxes of the radiation of the first and second type on the substrate causes an elevation of the substrate temperature which is substantially constant across at least a given area of the substrate.
Abstract:
A scanning electron microscope scans a sample using an accelerated electron beam, detects secondary electrons generated from the sample or reflected electrons or both of them, and forms images. After radiating the sample with the electron beam at a first acceleration voltage so as to charge the surface of the sample, where the electron beam is radiated at a predetermined potential, images are observed by scanning the charged sample surface at a second acceleration voltage different from the first acceleration voltage.
Abstract:
To advantageously eliminate the disadvantage of attenuation of the radiant light from dielectric barrier discharge lamps by a UV transmission component, a treatment device using dielectric barrier discharge lamps is provided with a lamp chamber in which dielectric barrier discharge lamps are located and in which there is an inert gas atmosphere; a treatment chamber, in which an article to be treated is located, is provided with a treatment gas atmosphere, and a UV transmission component by which the lamp chamber and the treatment chamber are separated from one another. In each of the lamp chamber and the treatment chamber there are devices for determining the gas pressure within the respective chamber, a supply arrangement for delivering gas to the inside the respective chamber and an arrangement for discharging gas from the respective chamber. A control device regulates the pressure of the gas atmosphere within the lamp chamber and the pressure of the gas atmosphere of the treatment chamber relative to one another by determining the gas pressures of the lamp chamber and the treatment chamber.
Abstract:
A probe has a cantilever structure. A piezoelectric element oscillates the probe at or near its resonance frequency. A piezoelectric plate detects a distortion amount of the probe. An actuator adjusts the position of the probe in an oscillating direction so as to stabilize the distortion amount at a constant value. A shifting device adjusts the mutual position between the probe and an objective surface.
Abstract:
The invention provides a local probe measuring device for effecting local measurements refering to a sample, comprising a plurality of local probes for local measurements with respect to a sample or a reference surface, a measurement condition adjustment arrangement adapted to commonly adjust measurement conditions of said local probes with respect to the sample or the reference surface, a plurality of detection arrangements, each being associated or adapted to be associated to one particular of said local probes and adapted to independently detect measurement data refering to local measurements effected by said particular local probe. Further, methods for effecting local measurements and local manipulations by means of multiple local probes are provided.
Abstract:
An ion implanting apparatus is provided with a control apparatus 22 for controlling the filament current passing to the respective filaments 6 in accordance with the beam current IB measured by a plurality of beam current measuring instruments 18. The control apparatus 22 performs, at least once respectively, {circle around (1)} the current value control routine which calculates average values of all beam current measured by the beam current measuring instruments 18, and increases and decreases the respective filament current IF such that the average value comes near to the set value, and {circle around (2)} the uniformity control routine which groups the beam current measuring instruments 17 into the number of the filaments, seeks for a maximum value and the minimum value from all the measured values of the beam current IB, decides groups to which the maximum value and the minimum value belong, decreases the filament current IF passing to the filaments 6 corresponding to the maximum value, and increases the filament current IF passing to the filaments 6 corresponding to the minimum value.
Abstract:
An apparatus for examining a specimen with a beam of charged particles, where charging of the specimen is avoided or reduced by injecting inert gas onto the sample's surface. In order to avoid interactions with the electron optics, various embodiments are disclosed for providing a rotationally symmetrical nozzles and/or electrodes. Additionally, embodiments are disclosed wherein a plurality of gas conduits are arranged in a rotationally symmetrical manner. Alternatively, the conduit is incorporated into an element of the electron optics, such as the magnetic lens. Also, in order to reduce or eliminate interaction of the electrons with the gas molecules, embodiments are disclosed wherein the gas is pulsated, rather than continually injected.
Abstract:
Apparatus and methods are disclosed for reducing proximity effects in pattern elements as defined on a reticle and projected onto a wafer or other substrate. Especially reduced are proximity effects arising from pattern elements (located inside a pattern or chip field on the substrate) and an alignment mark (located outside a pattern or chip field on the substrate). To control these proximity effects, the distance between the alignment mark, as projected onto the substrate, and nearest pattern elements is controlled. Desirably, the alignment mark(s) are regarded as part of the overall pattern as projected, thereby allowing any of various proximity-effect-reducing techniques to be applied. For example, the substrate can be exposed with a patterning beam and a corrective beam. The corrective beam serves to “sensitize” the substrate and can be exposed not only within the chip field but also in perimeter zones located just outside the chip field on the substrate.
Abstract:
Astigmatism-correction devices are disclosed for use in a charged-particle-beam (CPB) microlithography apparatus and methods and that do not produce higher-order aberrations when correcting deflection aberrations. The CPB microlithography apparatus includes a projection-optical system that includes first and second projection lenses and associated deflectors. The astigmatism-correction device can include a first coil array associated with the first projection lens upstream of an aperture, and a second astigmatism-correction device associated with the second projection lens downstream of the aperture. In each coil array, the nominal half-angle of the constituent coils is 30°. With such a configuration, higher-order aberrations that otherwise would be produced by the deflectors are reduced nearly to zero, making it possible to use large electrical currents in the deflectors. Specifically, deflection-astigmatism aberrations and hybrid deflection-astigmatic distortions otherwise produced by the deflectors are eliminated.