Abstract:
A gas supply assembly is described for delivery of gas to a plasma flood gun. The gas supply assembly includes: a fluid supply package configured to deliver inert gas to a plasma flood gun for generating inert gas plasma including electrons for modulating surface charge of a substrate in ion implantation operation; and cleaning gas in the inert gas fluid supply package in mixture with the inert gas, or in a separate cleaning gas supply package configured to deliver cleaning gas to the plasma flood gun concurrently or sequentially with respect to delivery of inert gas to the plasma flood gun. A method of operating a plasma flood gun is also described, in which cleaning gas is introduced to the plasma flood gun, intermittently, continuously, or sequentially in relation to flow of inert gas to the plasma flood gun. The cleaning gas is effective to generate volatile reaction product gases from material deposits in the plasma flood gun, and to effect re-metallization of a plasma generation filament in the plasma flood gun.
Abstract:
A charged particle beam specimen inspection system is described. The system includes an emitter for emitting at least one charged particle beam, a specimen support table configured for supporting the specimen, an objective lens for focusing the at least one charged particle beam, a charge control electrode provided between the objective lens and the specimen support table, wherein the charge control electrode has at least one aperture opening for the at least one charged particle beam, and a flood gun configured to emit further charged particles for charging of the specimen, wherein the charge control electrode has a flood gun aperture opening.
Abstract:
A system for zapping a wafer, the system includes a pulse generator; a sensor; a first conductive interface; a second conductive interface; a controller; wherein the pulse generator is configured to generate zapping pulses; wherein the first conductive interface is configured to provide the zapping pulses to a first location of a backside insulating layer of a wafer; wherein the sensor is configured to monitor a coupling between the first conductive interface and the second conductive interface to provide a monitoring result; wherein the monitoring occurs while the second conductive interface contacts a second location of the backside insulating layer; and wherein the controller is configured to control a generation of the zapping pulses in response to the monitoring result.
Abstract:
One embodiment relates to an apparatus for virtual grounding of a target substrate in a charged-particle beam apparatus. A primary gun generates charged particles for a process beam that is focused on a frontside surface of the target substrate, and the target substrate is held by a stage. An electrostatic voltmeter measures a voltage potential of the target substrate, and a charge-control gun impinges a beam of charged particles to the target substrate. A feedback control loop is used to control the flood gun depending on the voltage potential measured by the electrostatic voltmeter. Other embodiments, aspects and features are also disclosed.
Abstract:
A layer of conductive or semi-conductive material is formed on a surface of a sample and then the sample, when being charged particle beam imaged, is electrically coupled with an object having a large charge-receiving or charge-storage capacity (e.g., capacitance). Hence, the charging on the sample surface is removed and released quickly by the layer. The layer is then removed by reacting it with a predefined agent. The reaction forms a gaseous product which does not form a physical or chemical bond to the sample surface.
Abstract:
A structure for grounding an extreme ultraviolet mask (EUV mask) is provided to discharge the EUV mask during the inspection by an electron beam inspection tool. The structure for grounding an EUV mask includes at least one grounding pin to contact conductive areas on the EUV mask, wherein the EUV mask may have further conductive layer on sidewalls or/and back side. The inspection quality of the EUV mask is enhanced by using the electron beam inspection system because the accumulated charging on the EUV mask is grounded. The reflective surface of the EUV mask on a continuously moving stage is scanned by using the electron beam simultaneously. The moving direction of the stage is perpendicular to the scanning direction of the electron beam.
Abstract:
A gas injection system provides a local region at the sample surface that has sufficient gas concentration to be ionized by secondary electrons to neutralize charged on the sample surface. In some embodiments, a gas concentration structure concentrates the gas near the surface. An optional hole in the gas concentration structure allows the charged particle beam to impact the interior of a shrouded region. In some embodiments, an anode near the surface increases the number of ions that return to the work piece surface for charge neutralization, the anode in some embodiments being a part of the gas injection system and in some embodiments being a separate structure.
Abstract:
A structure for grounding an extreme ultraviolet mask (EUV mask) is provided to discharge the EUV mask during the inspection by an electron beam inspection tool. The structure for grounding an EUV mask includes at least one grounding pin to contact conductive areas on the EUV mask, wherein the EUV mask may have further conductive layer on sidewalls or/and back side. The inspection quality of the EUV mask is enhanced by using the electron beam inspection system because the accumulated charging on the EUV mask is grounded. The reflective surface of the EUV mask on a continuously moving stage is scanned by using the electron beam simultaneously. The moving direction of the stage is perpendicular to the scanning direction of the electron beam.
Abstract:
A wafer grounding apparatus and method adaptable to a charged particle beam apparatus is disclosed. A wafer substrate is supported by a wafer mount. A pulse current pin is arranged to be in contact with a backside film formed on a backside of the wafer substrate. A grounding pulse generator provides at least one pulse to drive the pulse current pin such that dielectric breakdown occurring at the backside film leads to establishment of a current path through the backside films. Accordingly, a current flows in the wafer substrate through this current path and then flows out of the wafer substrate via at least one current return path formed from capacitive coupling between the wafer substrate and the wafer mount.
Abstract:
A substrate cover 40 includes a conductive portion 41 having a shape corresponding to a peripheral edge region of a substrate. Since at least part of the conductive portion includes transmissive portions 47 each formed of a light transmissive member, it is configured so as to allow desired light to penetrate through. The position of each edge portion of the substrate is detected in such a manner that the substrate is disposed with the substrate cover 40 placed thereon between light irradiation means and a light detecting unit, irradiation light directed from the light irradiation means located above the substrate to the edge portion of the substrate is made to penetrate through at least part of the substrate cover 40, the edge portion of the substrate is then irradiated with light from the irradiation means.