Abstract:
An electron tube in which a side tube and a faceplate are sealed together using a malleable metal with a low melting point. The metal is made to spread out along the outer surface of the faceplate due to pressure from a first sealing portion of a sealing metal support member and along the peripheral surface of the electron tube due to pressure from a second sealing portion of the sealing metal support member. Accordingly, the outer side of the corner portion formed by the faceplate and the side tube is covered with the metal. This construction not only reliably secures the input faceplate to the side tube, but also is extremely effective in preserving the airtightness of the electron tube. Since the first sealing portion is pressed toward the faceplate, an appropriate pressure can be applied to the metal interposed between the first sealing portion and the faceplate, improving the sealability of the metal against the faceplate and the first sealing portion. This construction is also appropriate for mass production of electron tubes.
Abstract:
The present invention relates to a versatile side-on type photomultiplier comprising a structure for improving the uniformity in light receiving sensitivity. Disposed on the outer peripheral surface of a sealed envelope of this photomultiplier is a restricting member which guides light to be detected into, of the light receiving surface of a photocathode, an effective region where the light receiving sensitivity is high, thereby restraining the light to be detected from reaching the outside of the effective region.
Abstract:
This invention relates to an electron tube which stabilizes the orbits of electrons accelerated and focused by an electron lens and has a structure for effectively suppressing noise generated due to discharge. This electron tube has, at two ends of an insulating container, a cathode electrode and an anode electrode which constitute the electron lens. Particularly, in the electron tube, one end of the cathode electrode and a photocathode are supported by a conductive member arranged at one end of the insulating container, and the cathode electrode is electrically connected to the photocathode. The cathode electrode partially extends to a stem along the inner wall of the insulating container and is tapered toward the stem so that the distal end portion of the cathode electrode is separated from the inner wall of the insulating container. Therefore, the electron tube realizes, regardless of the size of the insulating container, a structure for preventing the insulating container from being charged and suppressing discharge followed by light emission between the cathode electrode and the insulating container.
Abstract:
This invention relates to an electron tube having a structure for enabling a stable operation for a long time. In the electron tube, at least a confining mechanism is arranged between a photocathode and the electron incident surface of a semiconductor device, which are arranged to oppose each other through a container. Particularly, the area of the opening of the confining mechanism is smaller than that of the electron incident surface, thereby confining the orbits of photoelectrons from the photocathode. This structure avoids bombardment of electrons arriving at portions other than the electron incident surface of the semiconductor device and prevents the semiconductor device from being unnecessarily charged.
Abstract:
The present invention relates to a versatile side-on type photomultiplier comprising a structure for improving the uniformity in light receiving sensitivity. This photomultiplier comprises a positioning structure for precisely positioning, with respect to the light receiving surface of a photocathode, a lens element which guides light to be detected to a photocathode and constitutes a part of an envelope accommodating the photocathode. The precisely positioned lens element guides the light to be detected into, of the light receiving surface of the photocathode, an effective region where the light receiving sensitivity is high, thereby restraining the light to be detected from reaching the outside of the effective region.
Abstract:
A focused electron/bombarded (FEB) ion detector comprising an MCP, focusing means, and a collection anode disposed in a detector body. The collector anode includes a diode for receiving the focused output electron beam from the MCP. The gain between the input ion current to the MCP and the detector output signal from the diode is on the order of 1-100 million, depending on the device configuration and applied biasing voltages. A hybrid photomultiplier tube includes a photocathode, a photodiode for collecting and multiplying electrons emitted by the photocathode and providing an output signal and electrodes for focusing the electrons on the photodiode. A vacuum envelope encloses a vacuum region between photocathode and the detector. A conductor disposed on or adjacent to a sidewall of the vacuum envelope reduces the effect of electrical charges on the inside wall of the vacuum envelope on the trajectories of the electrons.
Abstract:
A image intensifier tube, having its brightness curve corrected in a simple way. The image intensifier tube comprises an input window (3), and an output window (4) at which the brightness is measured. The output window (4) bears a device for the attenuation of light (20), the opacity of this device being greater in a central zone (0) than it is towards the edges (21).
Abstract:
A structure for supporting a funnel portion of a secondary electron multiplying tube in a secondary electron multiplier. In the supporting structure for the funnel portion, a support member has a circular contact element for supporting an end face of a mouth of the funnel, and nails formed along the outer periphery of the circular contact element so as to grasp the mouth end portion of the funnel from the outside thereof. A press member is welded to the support member into which the funnel portion is inserted. The posture and position of the funnel portion are correctly determined in relation to an opening of a Farady cup, by fixing the support member to a casing of the secondary electron multiplier.
Abstract:
According to the invention, said jacket has an input port integral with a central ferrous alloy body, which is made from an alloy of aluminium and magnesium of series 5000. This input port is fitted into an aluminium part of series 1000, to which it is welded. The aluminium part is brazed to the central body by aluminium-silicon or aluminium-silicon-magnesium eutectic brazing.
Abstract:
In order to limit the increased quantity of ions produced within the tube as a result of the presence of a microchannel element within the tube, getters are placed on the probable path followed by the ions under the action of potentials applied to the electrodes. The electrodes to which the getters adhere are designed in two parts or constituent elements in order to permit the supply of getters if necessary. The electrode elements are bent-back in order to serve as shields in the case of vaporizable getters.