Abstract:
An I2C and Manchester multiple serial interface LED driver programmer has a programmer that changes the operation parameters in the EEPROM of the LED driver via a computer graphic user interface. The LED driver operation is thus programmed according to the parameters stored in the EEPROM. The multiple interfaces are selectable as USB-to-I2C, RS232-to-I2C, USB-to-TxD/RxD, RS232-to-TxD/RxD and 3rd via a pass through USB-to-USB port for expanded LED programming interface such as Near Field Communication. The I2C and Manchester multiple serial interface LED driver has multiple output interface with USB-to-I2C, RS232-to-I2C, USB-to-TxD/RxD, RS232-to-TxD/RxD and third pass through USB-to-USB port for Near Field Communication interface.
Abstract:
A wireless lighting control system includes a remote server system connected to a wide area network and having software for configuring, monitoring, and controlling lighting fixtures at an installation site. The site includes wireless devices in communication with a gateway via a local wireless network and at least some of the wireless devices are configured to control lighting fixtures, including a configurable user control device, such as a wall dimmer switch, having user interface elements configurable to activate specific lighting effects, such as power, dimming, and scene control. A user computer device is connected to the wide area network and has a graphical user interface enabling virtually mapping of user interface elements to lighting effects. Configuration can advantageously be done without physical access to either the user control device or to the lighting controllers, fixtures, or other devices at the installation site.
Abstract:
An illumination system and method is disclosed for maintaining a consistent change in illumination value among a group of illumination devices whenever a change command is manually sent from a keypad to those illumination devices. The consistent change results from maintaining a common start illumination value among not only the group, but also the keypad which controls the group. From the start illumination value, the keypad can then compute an end illumination value depending upon the amount of time that the increase or decrease in illumination value button is depressed and held. Since the start change signal can arrive on different illumination devices within the group depending upon where each illumination device is geographically located, a masking time is reserved after the button is released so that enough time is allocated for each of the illumination devices within that group to arrive at a common end illumination value regardless of their disparate location to the keypad, the number of hops or interference therebetween.
Abstract:
An electronic torch is disclosed which includes at least one light emitting diode disposed in each one of a plurality of sections of the electronic torch. In one embodiment, each one of the plurality of sections of the electronic torch is independently selectable to activate the at least one light emitting diode disposed in each one of the plurality of sections of the electronic torch. In another embodiment, a mobile device may be connected to the electronic torch and provide instructions to the torch via a wired or wireless connection.
Abstract:
The disclosure is directed to a circuit that may detect a single short in a chain of loads, such as light emitting diodes (LEDs). The circuit may drive either multiple LED chains or a single LED chain to determine whether one, or more, of the LEDs in the LED chain is no longer working because of a short. The circuit determines whether the LED chain voltage satisfies a threshold based on a single LED voltage drop. Therefore, the same circuit may be used for applications regardless of the number of LEDs in an LED chain. Additionally, the circuit, according to the techniques of this disclosure may use may use no output pins, other than those used to deliver current to LED chains, regardless of the number of LED chains that the circuit drives.
Abstract:
A control unit controls an operation of an electric power conversion unit so that load current that flows through a light source load becomes a constant value, using electric power setting value that is used to determine a size of electric power that is supplied to the light source load and a current detection value that is detected by a current detection resistor (current detection unit), and a load electric power calculation unit obtains load electric power of the light source load using the electric power setting value and a voltage detection value that is detected by a voltage detection unit, and an input electric power estimation unit corrects a circuit loss for the obtained load electric power and estimates input electric power.
Abstract:
Provided herein an apparatus for generating plasma, the apparatus including a nozzle array, first electrode, and housing. The nozzle discharges plasma. The first electrode is disposed to surround the nozzle array. The housing is disposed to surround the nozzle array and first electrode. The nozzle includes a plurality of nozzles disposed adjacent to one another and in the form of an array, each nozzle configured to discharge plasma. Therefore, it is possible to generate a large size plasma evenly and stably.