Abstract:
A method of multidimensional modeling a magnetic resonance device (MRD) contrast agent introduced within the body of a patient. The method includes: introducing into the patient body or an organ an effective measure of at least one MRD contrast agent; imaging the MRD contrast agent located at least a portion of a body and providing data defining a multidimensional image; loading or otherwise streaming the MRD image to a multidimensional printer; and multidimensionally modeling the MRD contrast agent.
Abstract:
A method of reducing the effect of object movements along MRI imaging. The method includes: acquiring a sequence of MRI consecutive images of an object; storing on a computer readable medium, for each of the images, at least one parameter p indicating spatial image orientation at which the image was taken; analyzing the sequence of the images for detection of the object movement; and tagging images of at least one movement of the object.
Abstract:
An MRI apparatus that induces a magnetic resonance signal from an object to be imaged. The apparatus includes: magnet poles for creating a homogeneous magnetic field; and a set of RF coils for generating a radio frequency (RF) excitation pulse in the imaging volume of the apparatus, and for acquiring magnetic resonance signals resulting from the RF excitation pulse. The apparatus also includes a light-field (plenoptic) camera and the object may be imaged concurrently by both MRI and plenoptic channels. The obtained images can be superimposed.
Abstract:
Generally, a system for generating a magnetic field having a desired magnetic field strength and/or a desired magnetic field direction is provided. The system can include a plurality of magnetic segments and/or a plurality of ferromagnetic segments. Each magnetic segment can be positioned adjacent to at least one of the plurality of magnetic segments. Each ferromagnetic segment can be positioned adjacent to at least one of the plurality of magnetic segments. In various embodiments, a size, shape, positioning and/or number of magnetic segments and/or ferromagnetic segments in the system, as well as a magnetization direction of the magnetic segments can be predetermined based on, for example, predetermined parameters of the system (e.g., a desired magnetic field strength, direction and/or uniformity of the magnetic field, a desired elimination of a magnetic fringe field and/or total weight of the system) and/or based on a desired application of the system (e.g., performing a magnetic resonance imaging of at least a portion of a patient and/or performing a magnetic resonance spectroscopy of a sample).
Abstract:
A maneuverable RF coil assembly, useful for being maneuvered at both positions: (i) over at least a portion of a neonate immobilized within a cradle at time of MR imaging; and (ii) below or aside the cradle when it is not required for imaging. The maneuverable RF coil assembly comprises at least one RF coil and maneuvering mechanism. The maneuvering mechanism comprises both: (i) a linear reciprocating mechanism for approaching or otherwise drawing away at least one coil to and from the neonate; and (ii) tilting mechanism for placing at least one coil away from the neonate.
Abstract:
An MRI image is generated base on a first MRI scan and a second MRI scan. Using corresponding first and second k-space grid data, at least one instance of subject movement during acquisition of scan line data as part of the first MRI scan or second MRI scan is identified. Motion sensor data is consulted to determine if each identified instance of subject movement was during the first MRI scan or the second MRI scan. Corrected k-space grid data is generated using the other k-space grid data on a scan line by scan line basis and a resulting MRI image is generated therefrom.
Abstract:
A magnetic field device, with a first magnet, a first ferromagnetic element positioned adjacent to the first magnet, a second magnet, a second ferromagnetic element positioned adjacent to the second magnet and relative to the first ferromagnetic element to create a gap between the first ferromagnetic element and the second ferromagnetic element, and a third magnet positioned between the first ferromagnetic element and the second ferromagnetic element and within the gap.
Abstract:
A neonate incubator for positioning a neonate within a magnetic resonance imaging (MRI) device is provided. The neonate incubator can include RF shielding that can provide RF shielding during imaging, for example, while life support tubes are connected to the neonate during MRI imaging. The RF shielding can include a door to mate with a bore of the MRI device to provide the RF shielding, and a RF channel that extends along an axis that is substantially parallel to a longitudinal axis of the neonate incubator from an interior chamber of the neonate incubator through the RF shielding door.
Abstract:
Systems and methods of detecting a portion within tissue that has a variation of local magnetic susceptibility using an MRI device, including: transmitting a first spin-echo pulse sequence to the tissue, wherein the first spin-echo pulse sequence includes a first number of refocus pulses and a first TE value; transmitting a second spin-echo pulse sequence to the tissue, wherein the second spin-echo pulse sequence includes a second number of refocus pulses and a second TE value; obtaining a first image and a second image; determining one or more locations within the second image having a signal intensity that is different than the signal intensity of the same one or more locations within the first image; and identifying a portion of tissue that has a varied local magnetic susceptibility based on the determined one or more locations within the second image.
Abstract:
Generally, a system for generating a magnetic field having a desired magnetic field strength and/or a desired magnetic field direction is provided. The system can include a plurality of magnetic segments and/or a plurality of ferromagnetic segments. Each magnetic segment can be positioned adjacent to at least one of the plurality of magnetic segments. Each ferromagnetic segment can be positioned adjacent to at least one of the plurality of magnetic segments. In various embodiments, a size, shape, positioning and/or number of magnetic segments and/or ferromagnetic segments in the system, as well as a magnetization direction of the magnetic segments can be predetermined based on, for example, predetermined parameters of the system (e.g., a desired magnetic field strength, direction and/or uniformity of the magnetic field, a desired elimination of a magnetic fringe field and/or total weight of the system) and/or based on a desired application of the system (e.g., performing a magnetic resonance imaging of at least a portion of a patient and/or performing a magnetic resonance spectroscopy of a sample).