Abstract:
The present invention is directed to a gel polymer electrolyte for use in rechargeable polymer secondary batteries and a precursor composition thereof. The precursor composition can be injected into an aluminum shell of a battery cell, which undergoes in-situ heating polymerization by heating and forms a gel polymer electrolyte penetrating a partition membrane therein. The precursor composition contains (meth)acrylic (acrylate) monomers and a modified bismaleimide oligomer resulting from a reaction of barbituric acid and bismaleimide.
Abstract:
The present invention is to provide a method of enhancement of electrical conductivity for conductive polymer by use of field effect control, wherein on the substrate, whose surface was treated with a field, was coated by a containing monomer or oligomer solution of conductive polymer, through a field mechanism a monomer or oligomer of conductive polymer can demonstrate the sequential order molecular structure layer on the substrate, on this molecular structure layer was coated by an available amount of oxidant to proceed the polymerization, it was subjected to a field during polymerization to form 3-dimensional order stacking structure in order to increase the functional characteristic and electrical conductivity for conductive polymer.
Abstract:
The present invention provides a kind of liquid crystal aligning film composition used for liquid crystal display (LCD), in which the liquid crystal aligning film composition used for LCD is a polyimide resin oligomer (A) having the structural formula (I) as shown in the following: wherein m is an interger of 1, 2, and 3, R is selected one of from aromatic and cyclicaliphatic, X is selected from the group containing amide, ester, and ether etc., Y is the group of containing cholesterol structure; this polyimide resin oligomer (A) and the second reagent (B) are mixed together, through an induced process (C), to produce a thin film for aligning liquid crystal molecule.
Abstract:
The present invention discloses a photo-sensitive composition, used as a solder resist or a photosensitive material for insulation layers in the production of printed circuit boards. The photo-sensitive composition comprises a prepolymer containing carboxylic groups and unsaturated vinyl groups; photoinitiator; unsaturated photo-monomer; and the reaction adduct of bismaleimide derivative, barbituric acid derivative and epoxy compounds. The obtained photosensitive composition exhibits high adhesion towards PI substrates, in addition, it can be developed with alkaline water. The photosensitive composition obtained in the invention is very useful in packaging substrates, such as P-BGA, T-BGA and F-CSP due to its high heat resistance and solder resistance.
Abstract:
An epoxy based adhesive composition contains: (i) a barbituric acid-modified bismaleimide; (ii) an epoxy resin selected from the group consisting of tetraglycidylmethylenedianiline, diglycidyl ortho-phthalate, diglycidyl ether of bisphenol A, polyglycidyl ether of novolac, and epoxy cresol novolac; (iii) an elastomer such as a carboxylated acrylontrile rubber containing between 19 and 41 wt % of acrylontrile; (v) a hardening agent and (vi) a catalyst.
Abstract:
An improved method for preparing copper clad laminates from a copper substrate without a conventional or infrared oven. The method contains the steps of: (a) preparing a precursory coating composition which can be subsequently cured to become polyimide; (b) coating the precursory coating composition on a copper substrate; and (c) exposing the precursory coating composition to an infrared heater provided in an infrared curing apparatus. The infrared heater is selected such that it emits infrared rays of wavelengths correponding to the absorption spectrum of the precursory coating composition. A plurality of infrared heaters can be provided in the infrared curing apparatus, each can be designed to have a different effective heating length and/or operated at a uniquely predetermined surface temperature for optimum energy efficiency. Preferably, the precursory coating composition contains an upper layer consisting essentially of polyamic acid and a lower layer disposed between the upper layer and the copper substrate, the lower layer being a blended mixture of the polyamic acid and a modified bismaleimide.