Abstract:
A sealant composition is provided. The sealant composition includes (a) an oligomer including an unsaturated mono-carboxylic acid modified bisphenol A epoxy resin and an unsaturated mono-carboxylic acid modified bisphenol F epoxy resin, wherein an equivalence ratio of the bisphenol A epoxy resin to the bisphenol F epoxy resin is 0.05:0.95 to 0.3:0.7, the bisphenol A epoxy resin has a melting point higher than 40° C. and the bisphenol F epoxy resin has a melting point lower than 40° C.; (b) an epoxy resin having at least two or more than two epoxy groups; and (c) a photoinitiator.
Abstract:
The invention discloses a method of forming via-holes in multilayer circuit boards. The process includes forming covering substances in predetermined spots in a multilayer circuit board and thereafter applying an insulating layer upon the circuit board. The predetermined spots are then uncovered and the covering substances are removed to form via-holes.
Abstract:
A method for making high-density multilayer printed circuit boards is disclosed. It includes the steps of: (a) forming a pair of first conductive layers on top and bottom sides of a dielectric substrate; (b) forming first via holes through one of the first electrically conductive layers; (c) forming a blind hole through the dielectric substrate using a conformal laser drilling technique and filling the blind hole with an electrically conductive material; (d) forming a circuit pattern from the first electrically conductive layer; (e) forming a first electrically insulating layer on the first electrically conductive layer; (f) forming second via holes through the first electrically insulating layer using a non-conformal laser drilling technique; (g) forming a second electrically conductive layer covering the top surface of the circuit pattern, the first electrically insulating layer, and the side surface of the second via holes by electroplating; (h) forming a second electrically insulating layer on the first electrically conductive layer and filling the second via hole with the same electrically insulating material; (i) removing the second electrically insulating layer and the second electrically conductive layer above the second via hole; (j) forming a third electrically conductive layer on the first electrically insulating layer, wherein the third electrically conductive layer is in contact with the top edges of the second electrically conductive layer remaining on the cylindrical surface of the second via; (k) forming another circuit pattern on the third electrically conductive layer. Steps(e) through (k) can be repeated for more circuit patterns.
Abstract:
A resin composition, a resin and a method for manufacturing the same. The resin composition includes a plant oil derivative, and a multifunctional carboxylic acid, anhydride compound or a copolymer containing anhydride. The multifunctional carboxylic acid, the anhydride compound or the copolymer containing anhydride has an amount of 5-60 parts by weight relative to 100 parts by weight of the plant oil derivative.
Abstract:
Fabrication device of organic light emitting diode (OLED) includes a Substrate, a transparent conductive layer, an insulating film layer, an organic light-emitting layer, and a conductive layer; when a suitable potential is applied thereto, an organic light-emitting layer emits a visible light, however, it usually occurs breakdown between cathode and anode or bad signal, therefore, the present invention provides a positive insulating film photoresist with an easily inclining obtuse angle, smooth surface, and easily controlled fabrication condition to cover the edge of a transparent electrode (anode) in order to avoid that when the edge of ITO transparent electrode is sharp it causes an organic light-emitting layer film breakdown and results from signal lost or weaken to increase the yields.
Abstract:
A sealant composition is provided. The sealant composition includes (a) an oligomer including an unsaturated mono-carboxylic acid modified bisphenol A epoxy resin and an unsaturated mono-carboxylic acid modified bisphenol F epoxy resin, wherein an equivalence ratio of the bisphenol A epoxy resin to the bisphenol F epoxy resin is 0.05:0.95 to 0.3:0.7, the bisphenol A epoxy resin has a melting point higher than 40° C. and the bisphenol F epoxy resin has a melting point lower than 40° C.; (b) an epoxy resin having at least two or more than two epoxy groups; and (c) a photoinitiator.
Abstract:
The present invention discloses a photo-sensitive composition, used as a solder resist or a photosensitive material for insulation layers in the production of printed circuit boards. The photo-sensitive composition comprises a prepolymer containing carboxylic groups and unsaturated vinyl groups; photoinitiator; unsaturated photo-monomer; and the reaction adduct of bismaleimide derivative, barbituric acid derivative and epoxy compounds. The obtained photosensitive composition exhibits high adhesion towards PI substrates, in addition, it can be developed with alkaline water. The photosensitive composition obtained in the invention is very useful in packaging substrates, such as P-BGA, T-BGA and F-CSP due to its high heat resistance and solder resistance.