Abstract:
A method of acquiring information on a resource region for transmitting PHICH and a method of receiving PDCCH using the same are disclosed. The resource region for transmitting the PHICH can be specified by first information corresponding to the per-subframe PHICH number and second information corresponding to a duration of the PHICH within the subframe. The first information can be specified into a form resulting from multiplying a predetermined basic number by a specific constant. And, the specific constant can be transmitted via PBCH. Moreover, the second information can be acquired from the PBCH as well.
Abstract:
A method for a user equipment (UE) to receive a PDCCH (physical downlink control channel) transmitted from a base station via a specific resource region includes receiving a PBCH (physical broadcast channel) including first system information and PHICH (physical hybrid ARQ indicator channel) related information from the base station and receiving the PDCCH transmitted from the base station via the specific resource region for downlink control information.
Abstract:
A method for performing communication in a user equipment of a wireless communication system comprises receiving a control region through a specific frequency block of a plurality of frequency blocks, the control region including a plurality of control channels; identifying a first control channel for the user equipment in the control region; and performing an operation in accordance with information included in the first control channel, wherein the specific frequency block through which the first control channel is transmitted is changed according to a certain pattern with the lapse of time.
Abstract:
A method of transmitting control information for performing a Hybrid Automatic Repeat Request (HARQ) process in a wireless communication system supporting a plurality of transmission bands is disclosed. The method includes generating the control information including HARQ Process Set (HPS) information indicating a specific HPS of a plurality of HPSs corresponding to the plurality of transmission bands, and transmitting the generated control information to a user equipment. A predetermined number of independent HARQ processes is performed according to the plurality of transmission bands.
Abstract:
A method for transmitting control information to request a Channel Quality Indicator (CQI) in a wireless communication system supporting a plurality of transmission bands is disclosed. The method includes generating control information including downlink transmission band indication information and CQI request information, the downlink transmission band indication information indicating a downlink transmission band requiring CQI reporting among a plurality of downlink transmission bands and the CQI request information requesting CQI reporting for the downlink transmission band, and transmitting the generated control information on a downlink control channel of a predetermined downlink transmission band among the plurality of downlink transmission bands.
Abstract:
A method for adjusting a granularity of resource allocation in a wireless mobile communication system supporting a compact scheduling is discussed. A resource indication value (RIV) corresponds to a start index (S) of one set of consecutive virtual resource blocks (VRBs) and a length of the VRBs. The start index (S) is selected from among ‘s’ values (where s−P+mT
Abstract:
A radio communication system is provided. An uplink transmission method of a user equipment in a radio communication system includes performing Fourier transform on one or more data sequences to generate one or more first frequency-domain sequences, applying precoding for multi-antenna transmission to the one or more first frequency-domain sequences to generate one or more second frequency-domain sequences; performing inverse Fourier transform on the one or more second frequency-domain sequences to generate one or more transmission symbols, and transmitting the one or more transmission symbols via multiple antennas.
Abstract:
A method for wireless communication between user equipments (UEs) and a base station in a wireless communication system that supports a first UE using a single band and a second UE using multiple bands is provided. In the method, UE receives, from the base station, resource allocation information including information regarding a downlink component carrier (CC) and an uplink CC allocated to the UE, receives the allocated downlink CC, and transmits the allocated uplink CC by applying a cell ID thereto. The allocated downlink CC is one of downlink CCs to which different cell IDs are applied, pairs of CCs are predefined by associating uplink CCs respectively with downlink CCs in order to support the first UE. When the allocated downlink and uplink CCs do not belong to the pairs of CCs, the applied cell ID is a cell ID of a downlink CC that is paired with the allocated uplink CC in the predefined pairs of CCs.
Abstract:
A method for transmitting downlink control information and a method for generating a codeword for the same are disclosed. In generating a long code having a low code rate, a basic code of which minimum distance between codes is maximized is repeated by a prescribed number of times and bits of the repeated code are adjusted. Therefore, a minimum distance condition between codes of a long code is satisfied and simultaneously the code can be simply generated. Furthermore, control information can be transmitted with a low error rate by using the generated code.
Abstract:
A frequency hopping scheme in a communication system using a plurality of sub-carriers is disclosed. A sub-band for frequency hopping is set and the frequency hopping scheme is applied using the set sub-band. The frequency hopping scheme is applied in the communication system by assigning a virtual index to a resource block including one or more sub-carriers and transforming the virtual index according to a specific rule to acquire a virtual index of a next resource block for the frequency hopping.