Abstract:
A heat-dissipating device is provided for generating primary airflow to dissipate heat generated by external heat sources as well as secondary airflow to dissipate heat generated from the interior of the heat-dissipating device. The heat-dissipating device includes a primary fan and a secondary fan coupled with a shaft of the primary fan. The secondary fan is rotated along the shaft to generate the secondary airflow and dissipate heat generated by the heat-dissipating device per se. Thus, the operation temperature of the heat-dissipating device can be lowered to increase its life span.
Abstract:
A heat dissipation device and a blade structure thereof are employed to increase input air volume, A new impeller, mounted on the driving means, includes a hub and a plurality of rotor blades arranged around the hub. Preferably, the inner side of each rotor blades extends to a top surface and side surface of the hub. An upper edge of the rotor blades can extend axially beyond the top surface of the hub in the air inlet end for increasing the intake airflow by introducing the side airflow through the space defined between the inner edges of the plurality of rotor blades and the top surface of the hub.
Abstract:
A centrifugal fan, comprising a frame and a first guide portion. The frame comprises a bottom portion and a curved wall connected thereto. The curved wall comprises an airflow inlet. The first guide portion disposed along the curved wall at the bottom portion comprises a beginning area, a middle area, and an ending area. The middle area connects the beginning and the ending areas, and the beginning area extends from the airflow inlet. The beginning area has a width less than that of the ending area, and the beginning area has a height greater than that of the ending area.
Abstract:
An axial flow fan. The axial flow fan includes an impeller, an annular structure, and a plurality of connecting portions. The impeller has a plurality of blades, arranged radially. Each blade has an outer periphery. The outer periphery has a top portion. The annular structure is attached to the top portion of the outer periphery of each blade. Each connecting portion respectively connects each blade to the annular structure.
Abstract:
Disclosed is a stator structure of a rotary device and its forming method. The method for forming a stator structure includes the steps of (a) forming a first part having a first middle portion with a through hole, and M pieces of extending portions extending from the first middle portion, (b) forming a second part having a second middle portion with a through hole, and N pieces of extending portions extending from the second middle portion, (c) alternately bending the M pieces of extending portions of the first part toward a first direction and alternately bending the N pieces of extending portions of the second part toward a second direction opposite to the first directon, respectively, and (d) correspondingly combining the first and second parts together to form the stator structure in which the bent extending portions of the first and second parts constitute a columnar portion of the stator structure for winding a coil thereon, wherein M and N are even numbers not less than four, respectively.
Abstract:
A centrifugal fan with stator blades. The centrifugal fan includes a first frame, a second frame, a driving device, and a blade structure with a first portion and a second portion. The second frame includes a plurality of stator blades thereon. The first portion is coupled with the driving device, and includes a plurality of first rotor blades thereon. The second portion is combined with the first portion and includes a plurality of second rotor blades thereon. The stator blades are located between the first rotor blades and the second rotor blades respectively.
Abstract:
The heat-dissipating module includes at least one heat-dissipating device and a terminal mounted and fixed on one side of the heat-dissipating device and electrically connected with the heat-dissipating device. As the heat-dissipating module is inserted into a frame of the system, the terminal will be received by a receptacle inside the system such that the heat-dissipating module can be electrically connected to the system. The heat-dissipating module can be easily dissembled and replaced in a system without turning off the system and can provide the best heat-dissipating efficiency in a limited space of the system without being affected by the inside height or thickness of the system.
Abstract:
A modified mounting structure for a heat-dissipating device. The heat-dissipating device has a motor and a seat with a slot mounted on a base or the cover portion of a stator thereof. The seat secures a motor controller of the heat-dissipating device detecting phase changes of the magnetic poles of the motor. The structure of a heat-dissipating device reduces required components, manufacturing cost and assembly time, and the control circuit is greatly simplified.
Abstract:
A fan is disclosed for use in a system, and the system has at least one connection structure. The fan is mainly composed of an impeller and a base, and the impeller is connected to the base. The impeller at least has a hub, a plurality of blades and a driver. The base has at least one engaging member, and the engaging member is corresponding to the connection structure. Further, the fan is fixed on the system by connecting the engaging member and the connection structure together.