Abstract:
A tetragonal ring shape aperture is formed in the common electrode on one substrate and a cross shape aperture is formed at the position corresponding to the center of the tetragonal ring shape aperture in the pixel electrode on the other substrate. A liquid crystal layer between two electrodes are divided to four domains where the directors of the liquid crystal layer have different angles when a voltage is applied to the electrodes. The directors in adjacent domains make a right angle. The tetragonal ring shape aperture is broken at midpoint of each side of the tetragon, and the width of the aperture decreases as goes from the bent point to the edge. Wide viewing angle is obtained by four domains where the directors of the liquid crystal layer indicate different directions, disclination is removed and luminance increases.
Abstract:
A display substrate includes a base substrate, a first dielectric layer, a first lattice pattern, a second lattice pattern, and a second dielectric layer. The first lattice pattern is disposed on the first dielectric layer at a first color pixel region. The first lattice pattern includes a plurality of first nano metal wires. The second lattice pattern is disposed on the first dielectric layer at a second color pixel region. The second lattice pattern includes a plurality of second nano metal wires. The second nano metal wires have different dimensions from the first nano metal wires. The second dielectric layer covers the first nano metal wires and the second nano metal wires.
Abstract:
A liquid crystal display includes a gate line formed on a lower substrate, a storage line formed on the lower substrate, and a data line formed on the lower substrate crossing and insulated from the gate line and the storage line. The liquid crystal display also includes a pixel electrode formed on the lower substrate crossing and insulated from the storage line. The pixel electrode has a first aperture pattern. The liquid crystal display further includes a common electrode formed on an upper substrate and having a second aperture pattern, and a storage electrode connected to the storage line. The storage electrode overlaps the second aperture pattern. The storage line, first aperture pattern, and second aperture pattern each includes a straight portion slanting to the gate line. A long axis of a liquid crystal molecule is arranged perpendicular to a substrate when an electric field is not applied.
Abstract:
Apertures are formed in the common electrode or in the pixel electrode of a liquid crystal display to form a fringe field. Storage capacitor electrodes are formed at the position corresponding to the apertures to prevent the light leakage due to the disclination caused by the fringe field. The apertures extend horizontally, vertically or obliquely. The apertures in adjacent pixel regions may have different directions to widen the viewing angle.
Abstract:
In a vertically aligned mode LCD, a gate line and a storage line are formed on a substrate in parallel, and a storage electrode and a cover pattern are formed as branches of the storage line. The storage electrode is overlapped with an aperture of a common electrode formed on an upper substrate. The cover pattern is located between a pixel electrode and a data line to prevent a light leakage. Accordingly, an alignment error margin of the upper substrate and the lower substrate is increased, an aperture ratio is enhanced, and repairing the high pixel defect is possible. Further, the light leakage caused by a voltage of the data line is prevented.
Abstract:
A liquid crystal display comprises: first and second panels facing each other; a compensation film and a first polarizer disposed on the first panel, the compensation film having phase retardation characteristics; and a second polarizer having a supporting film disposed on the second panel, the supporting film having phase retardation characteristics. In alternative embodiments, a supporting film is used in place of the compensation film. The supporting film has retardation characteristics.
Abstract:
An LCD includes a plurality of electro-optical switches (pixels), each electro-optical switch includes a plurality of liquid crystal molecules, wherein each molecule has a first portion with a first long axis (a motional axis) and a second portion with a second long axis (a control axis). Each molecule may further include a third (shorter) axis. The first axis and the second axis cross each other and each axis is orthogonal to the other two axes. The first portion of each liquid crystal molecule has a positive dielectric anisotropy while the second portion of each liquid crystal molecule may have either a positive or negative dielectric anisotropy. The LCD may further include a first panel, a second panel that is opposite to the first panel, two field-generating electrodes that are included for each pixel in at least one of the two panels, and the plurality of liquid crystal molecules are interposed between the first panel and the second panel.
Abstract:
A thin film transistor array substrate is provided with a gate line assembly, a data line assembly, and thin film transistors. The data line assembly crosses over the gate line assembly while defining pixel regions. A pixel electrode is formed at each pixel region. A color filter substrate is provided with a black matrix, and color filters of red, green and blue are formed at the black matrix at the pixel regions. An overcoat layer covers the color filters, and a common electrode is formed on the overcoat layer with an opening pattern. The thin film transistor array substrate, and the color filter substrates face each other, and a liquid crystal material is injected between the thin film transistor array substrate, and the color filter substrate. The blue color filter has a thickness smaller than the red color filter or the green color filter such that the liquid crystal cell gap at the blue color filter is larger than the liquid crystal cell gap at the red or green color filter.
Abstract:
A liquid crystal display comprises two parallel spaced substrates and a liquid crystal layer with negative dielectric anisotropy interposed between the substrates. The ratio d/p, the cell gap d between the substrates to the pitch p of the liquid crystal layer, is equal to or less than 0.3, and the retardation value Δn*d may be in the range of 0.25-0.4. In absence of electric field, the liquid crystal molecules are arranged vertically to the substrates, and when the sufficient electric field is applied, the liquid crystal molecules are parallel to the substrates and twisted by 90° from one substrate to the other. To the outer surface of a liquid crystal cell having a liquid crystal material with a negative dielectric anisotropy, a combination of a-plate, c-plate or biaxial compensation films is attached. The direction having the largest refractive index of the a-plate or the biaxial film is parallel or perpendicular to the polarizing direction of adjacent polarizer. The difference between the summation of the retardation (nx−nz)*d of the a-plate, the c-plate and the biaxial films and the polarizers, and the retardation due to birefringence of the liquid crystal cell is equal to or less than 15% of the retardation due to birefringence of the liquid crystal cell. The retardation (nx−ny)*d of the a-plate or the biaxial film is 0-100 nm. nx, ny and nz are the refractive indices of the x, y and z axes respectively when the z axis is perpendicular to the surface of the liquid crystal cell, the x axis is in the surface of the liquid crystal cell and having the largest refractive index of the a-plate or the biaxial film and the y axis is in same plane as the x axis and perpendicular to the x axis, and d is the thickness of the film.
Abstract translation:液晶显示器包括两个平行间隔的衬底和介于各衬底之间的具有负介电各向异性的液晶层。 基板与液晶层的间距p之间的比率d / p,单元间隙d等于或小于0.3,延迟值Deltan * d可以在0.25-0.4的范围内。 在不存在电场的情况下,液晶分子与基板垂直配置,当施加足够的电场时,液晶分子平行于基板并从一个基板扭转90°。 在具有负介电各向异性的液晶材料的液晶单元的外表面上安装有a板,c板或双轴补偿膜的组合。 a板或双轴膜的折射率最大的方向与相邻偏振片的偏振方向平行或垂直。 a板,c板和双轴膜和偏振器之间的延迟(n×n)-n z z * * d的总和之差,以及 由于液晶单元的双折射引起的延迟是由于液晶单元的双折射引起的延迟的15%以下。 a板或双轴膜的延迟(n×sub-n×y)* d为0〜100nm。 当x轴垂直于x轴时,x,y和z轴的折射率分别为n
Abstract:
The liquid crystal display device includes a liquid crystal display panel, a c-plate mono-axial compensating film, first and second polarizing plates. The liquid crystal display panel includes a first substrate having a first electrode, a second substrate having a second electrode, and liquid crystal interposed between the first and second substrates. The liquid crystal is vertically aligned when no electrical filed is applied between the first and second electrodes. The c-plate mono-axial compensating film is disposed on the first substrate. The first polarizing plate is disposed on the c-plate mono-axial compensating film. The second polarizing plate is disposed on the second substrate. A liquid crystal display device according to an embodiment of the present invention has reduced thickness, weight. Further, the liquid crystal display device has increased luminance and broadened viewing angle.