Abstract:
A voice coil motor array module includes a carrier frame defining a plurality of receiving spaces and a plurality of magnet-mounting spaces disposed in pairs and in symmetry around the receiving spaces. Any two adjacent receiving spaces have only one magnet-mounting space therebetween. A plurality of magnetic components are respectively disposed in the magnet-mounting spaces. Each magnet-mounting space receives only one magnetic component. The magnetic components surrounding a corresponding receiving space have same magnetic poles facing each other. A plurality of displacement components are respectively disposed in the receiving spaces. Each displacement component includes a lens carrier and a coil.
Abstract:
A method for manufacturing a housing of an LED display device includes the steps of: (a) filling a first material into a first mold assembly at a first place to form a cover with a plurality of first display holes, followed by moving the cover to a second place, filling a second material into a second mold assembly and the cover to seal one of the plurality of the first display holes via a plurality of first transparent members; and (b) disposing an ink layer on a display side of the cover in such a manner that the ink layer covers the display side of the cover and that the first transparent member in each of the first display holes is exposed from the ink layer.
Abstract:
A power conversion device includes a full-bridge switch circuit, a converter circuit, and a control circuit. The full-bridge switch circuit is operable to convert a direct current input voltage to a converted voltage. The converter circuit converts the converted voltage into a direct current output voltage. The converter circuit includes a resonant inductor, a transformer, a first converter switch, a second converter switch, an output inductor, and an output capacitor. The direct current output voltage is provided across the output capacitor. The control circuit controls the full-bridge switch circuit, the first converter switch and the second converter switch based on the direct current output voltage and a reference voltage.
Abstract:
A liquid crystal display (LCD) system includes an LCD device and an alternating current (AC) adapter. The LCD device includes a video processing module and a light emitting diode (LED) backlight module. The AC adapter includes a backlight driving module and an AC-to-DC (direct current) converting module. The backlight driving module generates a backlight driving signal, and outputs the backlight driving signal to drive the LED backlight module of the LCD device . The AC-to-DC converting module is adapted to convert an AC line voltage into first and second DC voltages, and outputs the first and second DC voltages to power the video processing module of the LCD device and the backlight driving module, respectively.
Abstract:
A power converting device includes a main switch, a synchronous rectifier switch, a rectifier-filter circuit which outputs an output voltage, and a synchronous rectifier control circuit which includes a sampling circuit coupled to the rectifier-filter circuit for outputting a voltage variation signal, a differential amplifier circuit that outputs an amplified signal by adding the output voltage and an offset voltage to the voltage variation signal attenuated thereby, and a comparison circuit that compares the amplified signal with the output voltage so as to output a trigger signal, such that the synchronous rectifier switch is turned on when the main switch is turned off, and is turned off prior to conduction of the main switch.
Abstract:
A power distribution device for connection with a plurality of power supply units includes a signal control element, a transmission mechanism including a current transmission unit and a ground transmission unit, and a plurality of electrical connectors respectively adapted for insertion of and connection with the power supply units. Each electrical connector includes a first conductive terminals electrically connected to the signal control element for transmitting an electrical signal to the signal control element, and a plurality of second conductive terminals electrically connected to the current and ground transmission units for transmitting current to the current and ground transmission units.
Abstract:
In a method for document digitization, an apparatus generates a first image of a document sheet by irradiating the document sheet using a first light source and detecting the document sheet irradiated with light from the first light source, which enables detection of ink on the document sheet that defines a marked portion. The apparatus further generates a second image of the document sheet by irradiating the document sheet using a second light source and detecting the document sheet irradiated with light from the second light source, which enables detection of content on the document sheet. The apparatus further obtains a region of the second image that corresponds to the marked portion of the document sheet based on the first image.
Abstract:
An image scanning device includes a bottom wall, a surrounding wall extending upwardly from the bottom wall, a frame connected to the surrounding wall and having a first side plate, and a transparent panel fixed to the frame and having a lateral side supported by an upper part of the first side plate. A contact image sensor module is disposed on the bottom wall transverse to the first side plate, and includes a housing having a first short side wall spaced apart from the first side plate by a first distance less than or equal to 2 mm, and a plurality of sensors, one of which that is closest to the first short side wall is spaced apart from an outer surface of the first short side wall by a second distance less than or equal to 2.5 mm.
Abstract:
First and second positioning devices disposed at first and second stationary locations transmit first and second pilot signals, respectively. Transmission coverages of the first and second pilot signals have an area of overlap. When a mobile robot moves to the area of overlap, the mobile robot determines first angular orientation information between the mobile robot and the first positioning device, and second angular orientation information between the mobile robot and the second positioning device. The mobile robot then determines an initial position of the mobile robot based on the first stationary location, the second stationary location, the first angular orientation information, and the second angular orientation information.
Abstract:
An image scanning apparatus includes a base, a transparent plate, a guide rod disposed between the base and the transparent plate, an optical sensor module, and a carrier mounted on the guide rod and including a first support bracket to place the optical sensor module thereto and having a first pivot connecting portion, a second support bracket having a second pivot connecting portion connected pivotally to the first pivot connecting portion, and an elastic member disposed between the first and second support brackets and biasing upwardly the first support bracket so as to keep the optical sensor module in constant contact with the transparent plate.