Abstract:
A foreign matter detecting system which can acquire a clear image and detect a foreign matter with high accuracy based on the acquired image regardless of whether a subject is located far or near from an image capturing device in spite of a depth variation or a level difference. An image capturing unit having an externally controllable focus position is disposed above or below a liquid surface, and a ray of light from an LED is illuminated toward the liquid surface from above or the side at least at a focus position of the image capturing unit so that a foreign matter on the liquid surface causes mirror reflection. The focus position of the image capturing unit is changed over the range from the top of a container containing a liquid to the bottom thereof. At each focus position, an input image from the image capturing unit is taken into an image input unit of an image processing section. An image selecting unit of the image processing section selects an image focused on the liquid surface or a clearest image of the liquid surface from among the input images. An image detecting unit of the image processing section checks the presence and position of the mirror reflection, thereby detecting the foreign matter.
Abstract:
An electron beam applied from an electron gun 1 and reflected off a surface of a specimen 7 placed on a stage 2 that is tilted at a tilt angle &phgr;=0 is detected, and a signal intensity thereof is measured by an electron detector 3. Based upon the measurement, an image processing unit 6 calculates a slope angle &thgr; of the surface of the specimen, and determines candidates for cross-sectional shape of the specimen. Signal intensity of the electromagnetic wave that would be reflected from a surface having a cross-sectional shape of each of the candidates if the tilt angle &phgr; were changed into &phgr;=&phgr;0 are estimated, and compared with a signal intensity actually measured by the electron detector 3 with the tilt angle 100 being changed into &phgr;=&phgr;0. Consequently, cross sectional shape and three-dimensional shape can be determined based upon a result of comparison, without utilizing a matching process of feature points.
Abstract:
It is an object of the present invention to obtain an image which is focused on all portions of a sample and to provide a charged particle beam apparatus capable of obtaining a two-dimensional image which has no blurred part over an entire sample. In order to achieve the above object, the present invention comprises means for changing a focus condition of a charged particle beam emitted from a charged particle source, a charged particle detector for detecting charged particles irradiated from a surface portion of said sample in response to the emitted charged particle beam, and means for composing a two-dimensional image of the surface portion of the based on signals on which said charged particle beam is focused, said signals being among signals output from the charged particle detector.
Abstract:
It is an object of the present invention to obtain an image which is focused on all portions of a sample and to provide a charged particle beam apparatus capable of obtaining a two-dimensional image which has no blurred part over an entire sample. In order to achieve the above object, the present invention comprises means for changing a focus condition of a charged particle beam emitted from a charged particle source, a charged particle detector for detecting charged particles irradiated from a surface portion of said sample in response to the emitted charged particle beam, and means for composing a two-dimensional image of the surface portion of the based on signals on which said charged particle beam is focused, said signals being among signals output from the charged particle detector.
Abstract:
An optical fiber composite insulator comprises a hollow insulator body having an axial through-hole and at least one optical fiber extended through the through-hole and hermetically sealed to the inner surface of the through-hole by a sealing material. A relationship between a condition of the inner surface of the through-hole and the sealing material, a relationship between the inner diameters of the through-hole and the outer diameter of the hollow insulator body or a coating material on the optical fiber are selected to provide high insulating property, mechanical strength and airtight property of the optical fiber composite insulator.