Abstract:
The invention relates to a method for differentially representing myocardial tissue in different states of damage, comprising the following steps: administering a myocardium-suitable contrast agent to a patient under examination; entering at least one patient-specific parameter affecting the speed of uptake by and elimination from the myocardium of said contrast agent; calculating a point in time after administration of the contrast agent at which a difference between a contrast agent content in necrotic myocardial tissue and a contrast agent content in non-necrotic myocardial tissue attains a maximum value, on the basis of the at least one patient-specific parameter, and carrying out, at the point in time calculated, a late-phase CT scan for accentuation of necrotic myocardial tissue compared to non-necrotic myocardial tissue. The invention likewise relates to apparatus, in particular for carrying out the method.
Abstract:
Medical examination and/or treatment system, configured to capture and output at least one parameter to be monitored during examination and/or treatment, with the system being configured to evaluate the at least one captured parameter and to output an acoustic signal that can be modified as a function of the result of the evaluation.
Abstract:
The invention relates to a method and a device for marking three-dimensional structures on two-dimensional projection images of an object, with which a position marker is determined on two projection images of the object recorded from different projection directions, from which the position of the position marker in the three-dimensional space is calculated so that further, subsequently recorded projection images can be displayed superimposed by the position marker.
Abstract:
The invention relates to a method for registering intra-operative image data set with pre-operative 3D image data set, including: spatially calibrating an optical 3D sensor system with an intra-operative imaging modality, intra-operatively detecting the surface of an examination area of interest with the 3D sensor system to produce an intra-operative surface mask, intra-operatively recording the area of interest for examination with the intra-operative modality at least partly containing the intra-operative surface mask to obtain an intra-operative image data set, computing the same surface from the pre-operative 3D image data set containing the detected surface to obtain a pre-operative surface mask, registering the intra-operative and pre-operative surface mask with each other, determining a mapping specification between pre-operative 3D image data set and intra-operative image data set based on the calibration and the registration, and overlaying the intra-operative image data set with the pre-operative 3D data set based on the mapping specification.
Abstract:
A system and method of treating a patient is described, where an implantable device is introduced into the patient and guided to an appropriate location using a 2-dimentsional X ray taken prior to the introduction of the device, and a fluoroscopic image taken from the same aspect during the procedure, and using the same portion of a physiological cycle. The implantable device may be a percutaneous aortic heart valve (PHV), and the location of the device may be determined with respect to specific bodily structures identified in the 2-dimensional X-ray, such as the aortic valve and the coronary ostia. The installation position of the device is selected so as to avoid obstruction of the coronary ostia.
Abstract:
A method for providing measuring data for the precise local positioning of an ablation catheter comprises the recording of electrophysiological potential curves in a plurality of positions of the ablation catheter with regard to a potential measurement on a reference catheter. An x-ray image is recorded in each of the positions and the position of the ablation catheter in each instance on the x-ray image is characterized by a marker. The electrophysiological potential curves are coupled in a data-related manner with the markers. When a marker on the screen displaying the x-ray image is clicked on, the associated electrophysiological potential curves appear highlighted on another screen, if necessary in color or with increased brightness. Conversely, the x-ray image with the marker is queried, i.e. displayed and the marker highlighted when the potential curve is activated on a screen displaying the potential curve.
Abstract:
To make optimum use of an x-ray image recording system with an x-ray C-arm, which has an x-ray radiation source and an x-ray detector and can be pivoted about any axis, 2D axis lines are plotted in two x-ray images of an object to be imaged more precisely and these 2D axis lines are used to define a 3D axis line and the x-ray image recording system is set so that it can be directly pivoted precisely about this 3D axis line. A sequence of x-ray images is then recorded in positions of the x-ray C-arm, between which the same can be pivoted about this defined axis. This displays the object optimally.
Abstract:
The invention relates to a method for the combined three-dimensional image display of a catheter. The catheter is inserted into the heart area of a patient with electrophysiological data, as part of a cardiological investigation or treatment. A current position of the catheter is localized with fluoroscopy-aided. The current position of the catheter and the electrophysiological data of the patient are blended into a three-dimensional volumetric image of a structure of the heart for the combined three-dimensional image display.
Abstract:
To make optimum use of an x-ray image recording system with an x-ray C-arm, which has an x-ray radiation source and an x-ray detector and can be pivoted about any axis, 2D axis lines are plotted in two x-ray images of an object to be imaged more precisely and these 2D axis lines are used to define a 3D axis line and the x-ray image recording system is set so that it can be directly pivoted precisely about this 3D axis line. A sequence of x-ray images is then recorded in positions of the x-ray C-arm, between which the same can be pivoted about this defined axis. This displays the object optimally.
Abstract:
The invention relates to a medical imaging system as well as a collision protection method for such a system. In this system the movement of a moveable part, e.g. a C-arm, is stopped or slowed down, if the part enters an individual protective zone enclosing the patient. This zone is calculated individually for each patient from the surface of the patient detected by an optical sensor.