Abstract:
In embodiments, an apparatus includes a controller configured to operatively couple to a sensor (e.g., a touch panel sensor, a fingerprint sensor). The sensor includes a plurality of drive electrodes and a plurality of sense electrodes. Nodes are formed at the intersections of the plurality of drive electrodes and the sense electrodes. The controller includes output circuitry operatively coupled to the plurality of drive electrodes. The output circuitry is configured to generate unique drive signals to drive corresponding drive electrodes of touch panel sensor. The touch panel controller also includes input circuitry operatively coupled to the sense electrodes. The input circuitry is configured to measure mutual-capacitance formed at each intersection of the plurality of drive electrodes to create an image of one or more objects proximate to the sensor.
Abstract:
A capacitive touch panel is tested for the presence or absence of short and open circuits in drive and sense lines without the use of a tool that touches the surface of the panel. During a first stage of testing, drive lines of the touch panel are sequentially driven while the remaining drive lines are floated. Sense lines are read to indicate whether a driven drive line is shorted to an adjacent drive line, an open circuit, or coupled to a sense line that is an open circuit. During a second stage of testing, drive lines are driven while alternate sense lines are floated or enabled. The signals on the enabled sense lines are acquired to indicate whether the enabled sense lines are shorted to adjacent sense lines. This second stage can be repeated, switching the roles of the sense lines, to determine the locations of short and/or open circuits.
Abstract:
A method is disclosed for discovering communication devices. The method includes broadcasting, with a first communication device, a message that can be detected by one-hop neighbors. The first communication device listens for data indicating that it has at least one two-hop neighbor, and constructs and stores a list of its one-hop and two-hop neighbors. In addition, the method may also include selecting a subset of the set of one-hop neighbors such that all of the two-hop neighbors of the first communication device can be reached by the first communication device through the subset of one-hop neighbors. Then the selected subset is stored on a list on the first communication device. Next, the first communication device broadcasts to one-hop neighbors in the selected subset, the data indicating that a one-hop neighbor is part of the selected subset. The method also allows the discovery of multi-hop neighbors by utilizing the selected subset.
Abstract:
An electronic system for multiple agents, both coherent and non-coherent, to communicate with a hybrid cache, the hybrid cache to provide functionality associated with a cache for coherent agents in an outer shareable domain, and to provide functionality associated with a cache for non-coherent agents in a system shareable domain, the functionality provided by tag fields in cache lines stored in the hybrid cache. The tag fields are configured to indicate if a cache line of the hybrid cache belongs to at least one of a logical coherent cache or a logical system cache.
Abstract:
Apparatus and methods for an extensible robotic device with artificial intelligence and receptive to training controls. In one implementation, a modular robotic system that allows a user to fully select the architecture and capability set of their robotic device is disclosed. The user may add/remove modules as their respective functions are required/obviated. In addition, the artificial intelligence is based on a neuronal network (e.g., spiking neural network), and a behavioral control structure that allows a user to train a robotic device in manner conceptually similar to the mode in which one goes about training a domesticated animal such as a dog or cat (e.g., a positive/negative feedback training paradigm) is used. The trainable behavior control structure is based on the artificial neural network, which simulates the neural/synaptic activity of the brain of a living organism.
Abstract:
Systems and methods relate to a network on chip (NoC) which includes one or more channels configured to carry data packets in a first direction, the first direction having an upstream end and a downstream end. A tunnel is configured between an upstream element at the upstream end and a downstream element at the downstream end. The tunnel includes common wires which are shared by the one or more channels. The tunnel is configured to transmit data packets of two or more formats on the common wires based on common signals. common signals comprise data signals to transmit one or more of data, control, or debug information belonging to the data packets on the common wires, and framing signals to control transmission of the data signals on the common wires.
Abstract:
A capacitive touch panel includes sense electrodes arranged next to one another and drive electrodes arranged next to one another across the sense electrodes. The drive electrodes and the sense electrodes define a coordinate system where each coordinate location comprises a capacitor formed at a junction between one of the drive electrodes and one of the sense electrodes via mutual capacitance between the electrodes. The drive electrodes are configured to receive a first signal from a driver coupled with the drive electrodes for powering the drive electrodes to sense passive input to the capacitive touch panel at each coordinate location. Passive input can also be sensed via self-capacitance of the capacitive touch panel sensors. The drive electrodes and the sense electrodes are configured to receive a second signal from an active stylus to sense active input to the capacitive touch panel at each coordinate location.
Abstract:
A temperature sensing device and method for fabrication of the temperature sensing device are described that include a second temperature sensor disposed on and/or in the lid assembly. In an implementation, the temperature sensing device includes a substrate, a ceramic structure disposed on the substrate, a thermopile disposed on the substrate, a first temperature sensor disposed on the substrate, and a lid assembly disposed on the ceramic structure, where the lid assembly includes a base layer, a first filter layer disposed on a first side of the base layer, a first metal layer disposed on a second side of the base layer, a passivation layer disposed on the first metal layer, where the passivation layer includes at least one of a second metal layer, a via, a metal plate, or an epoxy ring, and a second temperature sensor disposed on and/or in the passivation layer.
Abstract:
A system includes a first group of transmit electrodes configured to be driven from a first side of a capacitive touch panel and a second group of transmit electrodes configured to be driven from a second side of the panel. The system also includes receive electrodes and a controller operatively coupled with the transmit electrodes and the receive electrodes. The controller is operable to dynamically configure the transmit electrodes and the receive electrodes to compensate for phase delays introduced by driving the transmit electrodes from different sides of the panel. A method includes driving a first group of transmit electrodes from a first side of a capacitive touch panel, driving a second group of transmit electrodes from a second side of the panel, and dynamically configuring the transmit electrodes and receive electrodes to compensate for phase delays introduced by driving the transmit electrodes from different sides of the panel.
Abstract:
A detector circuit for determining an unknown load impedance (Zx) without the need for a signal level detector is provided. The detector circuit comprises a phase detector to derive two phase differences (α, β) between three input signals (V12, V10, V20) and a calculation circuit to derive a signal ratio.