Event Prediction in Dynamic Environments
    71.
    发明申请
    Event Prediction in Dynamic Environments 有权
    动态环境中的事件预测

    公开(公告)号:US20110184778A1

    公开(公告)日:2011-07-28

    申请号:US12694485

    申请日:2010-01-27

    摘要: Event prediction in dynamic environments is described. In an embodiment a prediction engine may use the learnt information to predict events in order to control a system such as for internet advertising, email filtering, fraud detection or other applications. In an example one or more variables exists for pre-specified features describing or associated with events and each variable is considered to have an associated weight and time stamp. For example, belief about each weight is represented using a probability distribution and a dynamics process is used to modify the probability distribution in a manner dependent on the time stamp for that weight. For example, the uncertainty about the associated variable's influence on prediction of future events is increased. Examples of different schedules for applying the dynamics process are given.

    摘要翻译: 描述动态环境中的事件预测。 在一个实施例中,预测引擎可以使用所学习的信息来预测事件,以便控制诸如互联网广告,电子邮件过滤,欺诈检测或其他应用的系统。 在一个示例中,存在用于描述或与事件相关联的预先指定的特征的一个或多个变量,并且每个变量被认为具有相关联的权重和时间戳。 例如,使用概率分布来表示关于每个权重的信念,并且使用动态过程以取决于该权重的时间戳的方式来修改概率分布。 例如,相关变量对未来事件预测的影响的不确定性增加。 给出了应用动态过程的不同时间表的示例。

    Mixture model for motion lines in a virtual reality environment
    72.
    发明授权
    Mixture model for motion lines in a virtual reality environment 有权
    虚拟现实环境中运动线的混合模型

    公开(公告)号:US07965295B2

    公开(公告)日:2011-06-21

    申请号:US12417627

    申请日:2009-04-02

    IPC分类号: G06T15/00

    摘要: Improved human-like realism of computer opponents in racing or motion-related games is provided by using a mixture model to determine a dynamically prescribed racing line that the AI driver is to follow for a given segment of the race track. This dynamically prescribed racing line may vary from segment to segment and lap to lap, roughly following an ideal line with some variation. As such, the AI driver does not appear to statically follow the ideal line perfectly throughout the race. Instead, within each segment of the course, the AI driver's path may smoothly follow a probabilistically-determined racing line defined relative to at least one prescribed racing line.

    摘要翻译: 通过使用混合模型来确定AI驱动程序对于赛道的给定段落要遵循的动态规定的赛车线,提供了赛车或运动相关游戏中的计算机对手的人性化现实主义。 这个动态规定的赛车线可能会有所不同,分段和分段,搭搭到搭乘,大致跟随一个理想的线条,有一些变化。 因此,AI驱动程序在整个比赛中都不会完美地跟随理想线条。 相反,在本课程的每个部分中,AI驾驶员的路径可以顺利地遵循相对于至少一个规定赛车线定义的概率确定的赛车线。

    RACING LINE OPTIMIZATION
    73.
    发明申请
    RACING LINE OPTIMIZATION 有权
    赛车行优化

    公开(公告)号:US20110137629A1

    公开(公告)日:2011-06-09

    申请号:US13006263

    申请日:2011-01-13

    IPC分类号: G06G7/70 G06F17/10

    摘要: An automatic algorithm for finding racing lines via computerized minimization of a measure of the curvature of a racing line is derived. Maximum sustainable speed of a car on a track is shown to be inversely proportional to the curvature of the line it is attempting to follow. Low curvature allows for higher speed given that a car has some maximum lateral traction when cornering. The racing line can also be constrained, or “pinned,” at arbitrary points on the track. Pinning may be performed randomly, deterministically, or manually and allows, for example, a line designer to pin the line at any chosen points on the track, such that when the automatic algorithm is run, it will produce the smoothest line that still passes through all the specified pins.

    摘要翻译: 推导出通过计算机化最小化赛车线的曲率的度量来找到赛车线的自动算法。 轨道上汽车的最大可持续速度显示为与其试图跟随的线的曲率成反比。 由于在转弯时汽车具有一定的最大横向牵引力,所以低曲率允许更高的速度。 赛道也可以在轨道上的任意点受到限制或“固定”。 固定可以随机,确定地或手动执行,并且允许例如线设计者在轨道上的任何选定点处将线固定,使得当运行自动算法时,它将产生仍然通过的最平滑的线 所有指定的引脚。

    Managing a Portfolio of Experts
    74.
    发明申请
    Managing a Portfolio of Experts 有权
    管理专家组合

    公开(公告)号:US20110131163A1

    公开(公告)日:2011-06-02

    申请号:US12628421

    申请日:2009-12-01

    IPC分类号: G06F15/18 G06N7/02

    CPC分类号: G06N5/04 G06Q10/00

    摘要: Managing a portfolio of experts is described where the experts may be for example, automated experts or human experts. In an embodiment a selection engine selects an expert from a portfolio of experts and assigns the expert to a specified task. For example, the selection engine has a Bayesian machine learning system which is iteratively updated each time an experts performance on a task is observed. For example, sparsely active binary task and expert feature vectors are input to the selection engine which maps those feature vectors to a multi-dimensional trait space using a mapping learnt by the machine learning system. In examples, an inner product of the mapped vectors gives an estimate of a probability distribution over expert performance. In an embodiment the experts are automated problem solvers and the task is a hard combinatorial problem such as a constraint satisfaction problem or combinatorial auction.

    摘要翻译: 描述专家组合的描述,专家可能是例如,自动化专家或人类专家。 在一个实施例中,选择引擎从专家组合中选择专家,并将专家分配给指定的任务。 例如,选择引擎具有贝叶斯机器学习系统,每当观察到任务上的专家表现时,该学习系统被迭代地更新。 例如,将稀疏活动的二进制任务和专家特征向量输入到使用机器学习系统学习的映射将这些特征向量映射到多维特征空间的选择引擎。 在示例中,映射向量的内积给出了对专家性能的概率分布的估计。 在一个实施例中,专家是自动化问题解决者,并且任务是诸如约束满足问题或组合拍卖之类的硬组合问题。

    Recommender System
    75.
    发明申请
    Recommender System 有权
    推荐系统

    公开(公告)号:US20100100416A1

    公开(公告)日:2010-04-22

    申请号:US12253854

    申请日:2008-10-17

    IPC分类号: G06F17/30

    摘要: A recommender system may be used to predict a user behavior that a user will give in relation to an item. In an embodiment such predictions are used to enable items to be recommended to users. For example, products may be recommended to customers, potential friends may be recommended to users of a social networking tool, organizations may be recommended to automated users or other items may be recommended to users. In an embodiment a memory stores a data structure specifying a bi-linear collaborative filtering model of user behaviors. In the embodiment an automated inference process may be applied to the data structure in order to predict a user behavior given information about a user and information about an item. For example, the user information comprises user features as well as a unique user identifier.

    摘要翻译: 推荐系统可以用于预测用户将相对于项目给出的用户行为。 在一个实施例中,这样的预测用于使得可以向用户推荐项目。 例如,产品可能会推荐给客户,潜在的朋友可能会推荐给社交网络工具的用户,组织可能会推荐给自动化用户或其他项目可能推荐给用户。 在一个实施例中,存储器存储指定用户行为的双线性协同过滤模型的数据结构。 在该实施例中,自动推理过程可以应用于数据结构,以便预测给定关于用户的信息的用户行为和关于项目的信息。 例如,用户信息包括用户特征以及唯一的用户标识符。

    Dependency structure from temporal data
    76.
    发明授权
    Dependency structure from temporal data 有权
    时态数据依赖结构

    公开(公告)号:US07702482B2

    公开(公告)日:2010-04-20

    申请号:US11027188

    申请日:2004-12-30

    IPC分类号: G06F17/18

    摘要: Based on the time series data from multiple components, the systems administrator or other managing entity may desire to find the temporal dependencies between the different time series data over time. For example, based on actions indicated in time series data from two or more servers in a server network, a dependency structure may be determined which indicates a parent/child or dependent relationship between the two or more servers. In some cases, it may also be beneficial to predict the state of a child component, and/or predict the average time to a state change or event of a child component based on the parent time series data. These determinations and predications may reflect the logical connections between actions of components. The relationships and/or predictions may be expressed graphically and/or in terms of a probability distribution.

    摘要翻译: 基于来自多个组件的时间序列数据,系统管理员或其他管理实体可能希望随着时间的推移找到不同时间序列数据之间的时间依赖关系。 例如,基于来自服务器网络中的两个或多个服务器的时间序列数据中指示的动作,可以确定依赖结构,其指示两个或多个服务器之间的父/子或依赖关系。 在某些情况下,基于父时间序列数据预测子组件的状态和/或预测子组件的状态改变或事件的平均时间也可能是有益的。 这些确定和预测可能反映组件的动作之间的逻辑连接。 关系和/或预测可以以图形和/或以概率分布来表示。

    Learning belief distributions for game moves
    77.
    发明授权
    Learning belief distributions for game moves 失效
    学习游戏移动的信念分布

    公开(公告)号:US07647289B2

    公开(公告)日:2010-01-12

    申请号:US11421913

    申请日:2006-06-02

    IPC分类号: G06F15/18 G06F15/00

    CPC分类号: A63F3/022 A63F3/04 G09B19/22

    摘要: We describe an apparatus for learning to predict moves in games such as chess, Go and the like, from historical game records. We obtain a probability distribution over legal moves in a given board configuration. This enables us to provide an automated game playing system, a training tool for players and a move selector/sorter for input to a game tree search system. We use a pattern extraction system to select patterns from historical game records. Our learning algorithm learns a distribution over the values of a move given a board position based on local pattern context. In another embodiment we use an Independent Bernoulli model whereby we assume each moved is played independently of other available moves.

    摘要翻译: 我们描述一种从历史游戏记录中学习来预测诸如象棋,Go等游戏中的移动的装置。 在给定的电路板配置中,我们获得了合法移动的概率分布。 这使我们能够提供一种自动游戏系统,用于玩家的训练工具和用于输入到游戏树搜索系统的移动选择器/分选器。 我们使用模式提取系统从历史游戏记录中选择模式。 我们的学习算法基于局部模式上下文学习一个给定一个董事会职位的动作值的分布。 在另一个实施例中,我们使用独立的伯努利模型,由此我们假设每个移动都是独立于其他可用移动进行的。

    Racing line optimization
    78.
    发明申请
    Racing line optimization 有权
    赛车线优化

    公开(公告)号:US20070156327A1

    公开(公告)日:2007-07-05

    申请号:US11322527

    申请日:2005-12-30

    IPC分类号: G01C21/00

    摘要: An automatic agorithm for finding racing lines via computerized minimization of a measure of the curvature of a racing line is derived. Maximum sustainable speed of a car on a track is shown to be inversely proportional to the curvature of the line it is attempting to follow. Low curvature allows for higher speed given that a car has some maximum lateral traction when cornering. The racing line can also be constrained, or “pinned,” at arbitrary points on the track. Pinning may be randomly, deterministically, or manually and allows, for example, a line designer to pin the line at any chosen points on the track, such that when the automatic algorithm is run, it will produce the smoothest line that still passes through all the specified pins.

    摘要翻译: 导出通过计算机化最小化赛车线的曲率的度量来找到赛车线的自动算法。 轨道上汽车的最大可持续速度显示为与其试图跟随的线的曲率成反比。 由于在转弯时汽车具有一定的最大横向牵引力,所以低曲率允许更高的速度。 赛道也可以在轨道上的任意点受到限制或“固定”。 固定可以是随机的,确定的或手动的,并且允许例如线设计者在轨道上的任何选定点处固定线,使得当运行自动算法时,它将产生仍然通过所有的最平滑的线 指定的引脚。

    Seeding in a bayesian skill scoring framework
    79.
    发明申请
    Seeding in a bayesian skill scoring framework 有权
    播种在贝叶斯技能评分框架

    公开(公告)号:US20070026934A1

    公开(公告)日:2007-02-01

    申请号:US11540195

    申请日:2006-09-29

    IPC分类号: A63F9/24

    CPC分类号: A63F11/0051

    摘要: Skill scores represent a ranking or other indication of the skill of the player based on the outcome of the game in a gaming environment. Skills scores can be used in matching compatible players on the same team and matching opposing players or teams to obtain an evenly-matched competition. An initial skill score of a player in a new gaming environment may be based in whole or in part on the skill score of that player in another game environment. The influence that the skill scores for these other game environments may have in the skill score seeding for the new game environment may be weighted based on a defined compatibility factor with the new game environment. The compatibility factor can be determined based on a game-to-game basis, compatible categories or features, game developer defined parameters, or any combination of considerations.

    摘要翻译: 技能分数表示基于游戏环境中的游戏结果的玩家的技能的排名或其他指示。 技能分数可用于匹配同一队伍中的兼容玩家,并匹配对手的球员或球队获得均匀匹配的比赛。 新游戏环境中的玩家的初始技能得分可以全部或部分地基于该玩家在另一游戏环境中的技能得分。 可以基于与新的游戏环境的定义的兼容性因素来加权这些其他游戏环境的技能得分对于新游戏环境的技能得分的影响。 兼容性因素可以基于游戏到游戏的基础,兼容的类别或特征,游戏开发者定义的参数或任何考虑的组合来确定。