Abstract:
An appearance inspection apparatus analyzes a difference in detection characteristics of detection signals obtained by detectors to flexibly meet various inspection purposes without changing a circuit or software. The apparatus includes a signal synthesizing section that synthesizes detection signals from the detectors in accordance with a set condition. An input operating section sets a synthesizing condition of the detection signal by the signal synthesizing section, and an information display section displays a synthesizing map structured based on a synthesized signal which is synthesized by the signal synthesizing section in accordance with a condition set by the input operating section.
Abstract:
A method and equipment which includes an illustrated-spot illumination-distribution data table for storing an illumination distribution within an illustrated spot and which calculates a coordinate position for a particle or a defect and the diameter of the particle on the basis of detection light intensity data about the particle or defect and the illustrated-spot illumination-distribution data table. Thus, even when the illumination distribution within the illustrated spot based on an actual illumination optical system is not a Gaussian distribution, the calculation of the particle diameter of the detected particle or defect and the calculation of a coordinate position on the surface of an object to be inspected can be attained with an increased accuracy.
Abstract:
Light from a light source becomes two illumination beams by a beam splitter. The beams are irradiated onto a semiconductor wafer from two mutually substantially orthogonal azimuthal angles having substantially equal elevation angles to form illumination spots. When the sum of scattered, diffracted, and reflected lights due to the illumination beams is detected, influence of the anisotropy which a contaminant particle and a defect existing in the wafer itself or thereon have with respect to an illumination direction, can be eliminated.
Abstract:
A surface inspection apparatus capable of acquiring scattered light intensity distribution information for each scattering azimuth angle, and detecting foreign matters and defects with high sensitivity. A concave mirror for condensation and another concave mirror for image formation are used to cope with a broad cubic angle. Since mirrors for condensation and image formation are used, a support for clamping the periphery of a lens is unnecessary, and an effective aperture area does not decrease. A plurality of azimuth-wise detection optical systems is disposed and reflected light at all azimuths can be detected by burying the entire periphery without calling for specific lens polishing. A light signal unification unit sums digital data from a particular system corresponding to a scattering azimuth designated in advance in the systems for improving an S/N ratio.
Abstract:
Light from a light source becomes two illumination beams by a beam splitter. The beams are irradiated onto a semiconductor wafer from two mutually substantially orthogonal azimuthal angles having substantially equal elevation angles to form illumination spots. When the sum of scattered, diffracted, and reflected lights due to the illumination beams is detected, influence of the anisotropy which a contaminant particle and a defect existing in the wafer itself or thereon have with respect to an illumination direction, can be eliminated.
Abstract:
In the conventional contaminant particle/defect inspection method, if the illuminance of the illumination beam is held at not more than a predetermined upper limit value not to give thermal damage to the sample, the detection sensitivity and the inspection speed being in the tradeoff relation with each other, it is very difficult to improve one of the detection sensitivity and the inspection speed without sacrificing the other or improve both at the same time. The invention provides an improved optical inspection method and an improved optical inspection apparatus, in which a pulse laser is used as a light source, and a laser beam flux is split into a plurality of laser beam fluxes which are given different time delay to form a plurality of illumination spots. The scattered light signal from each illumination spot is isolated and detected by using a light emission start timing signal for each illumination spot.
Abstract:
A surface defect inspection apparatus is structured to add detection signals of multi-directionally detected scattered lights to detect a tiny defect and to individually process the respective detection signals to prevent an error failing to detect an anisotropic defect.
Abstract:
A surface inspection apparatus capable of acquiring scattered light intensity distribution information for each scattering azimuth angle, and detecting foreign matters and defects with high sensitivity. A concave mirror for condensation and another concave mirror for image formation are used to cope with a broad cubic angle. Since mirrors for condensation and image formation are used, a support for clamping the periphery of a lens is unnecessary, and an effective aperture area does not decrease. A plurality of azimuth-wise detection optical systems is disposed and reflected light at all azimuths can be detected by burying the entire periphery without calling for specific lens polishing. A light signal unification unit sums digital data from a particular system corresponding to a scattering azimuth designated in advance in the systems for improving an S/N ratio.
Abstract:
The pattern defect inspection apparatus is operable to detect defects by comparing a detection image, which is obtained through scanning by an image sensor those patterns that have the identical shape and are continuously disposed on the object under tested at equal intervals in row and column directions, with a reference image obtained by scanning neighboring identical shape patterns in the row and column directions. This apparatus has a unit for generating an average reference image by statistical computation processing from the images of identical shape patterns lying next to the detection image including at least eight nearest chips on the up-and-down and right-and-left sides and at diagonal positions with the detection image being intermediately situated. The apparatus also includes a unit that detects a defect by comparing the detection image to the average reference image thus generated.
Abstract:
A surface inspection apparatus capable of acquiring scattered light intensity distribution information for each scattering azimuth angle, and detecting foreign matters and defects with high sensitivity. A concave mirror for condensation and another concave mirror for image formation are used to cope with a broad cubic angle. Since mirrors for condensation and image formation are used, a support for clamping the periphery of a lens is unnecessary, and an effective aperture area does not decrease. A plurality of azimuth-wise detection optical systems is disposed and reflected light at all azimuths can be detected by burying the entire periphery without calling for specific lens polishing. A light signal unification unit sums digital data from a particular system corresponding to a scattering azimuth designated in advance in the systems for improving an S/N ratio.