Abstract:
A fusion sensor arrangement includes a first sensor configured to detect the presence of an object along a wayside of a guideway, wherein the first sensor is sensitive to a first electromagnetic spectrum. The fusion sensor arrangement further includes a second sensor configured to detect the presence of the object along the wayside of the guideway, wherein the second sensor is sensitive to a second electromagnetic spectrum different from the first electromagnetic spectrum. The fusion sensor arrangement further includes a data fusion center connected to the first sensor and to the second sensor, wherein the data fusion center is configured to receive first sensor information from the first sensor and second sensor information from the second sensor, and to resolve a conflict between the first sensor information and the second sensor information.
Abstract:
A system comprises a speed detector, a marker sensor, a controller, a sensor unit, and a processor. The speed detector is configured to generate speed data associated with a movement of a vehicle. The marker sensor is configured to generate marker data based on a detection of an object along a wayside of a guideway. The controller is configured to calculate a distance the vehicle moved, generate location information, and generate an indication the vehicle is stationary. The sensor unit comprises an accelerometer, a gyroscope, and a magnetometer. The sensor unit is configured to generate sensor data based on information gathered by one or more of the accelerometer, the gyroscope, or the magnetometer. The processor is configured to process the sensor data to determine a vehicle position based on the sensor data and the location information. The controller is further configured to compare the location information with the vehicle position.
Abstract:
A system comprises a speed detector, a marker sensor, a controller, a sensor unit, and a processor. The speed detector is configured to generate speed data associated with a movement of a vehicle. The marker sensor is configured to generate marker data based on a detection of an object along a wayside of a guideway. The controller is configured to calculate a distance the vehicle moved, generate location information, and generate an indication the vehicle is stationary. The sensor unit comprises an accelerometer, a gyroscope, and a magnetometer. The sensor unit is configured to generate sensor data based on information gathered by one or more of the accelerometer, the gyroscope, or the magnetometer. The processor is configured to process the sensor data to determine a vehicle position based on the sensor data and the location information. The controller is further configured to compare the location information with the vehicle position.
Abstract:
Apparatus and methods for a grade crossing protection system include at least one camera providing surveillance of a grade crossing, the at least one camera coupled to a transmitter configured to transmit a signal that includes imagery of the grade crossing to a transceiver onboard a train. A display unit onboard the train is provided to allow the train operator to view the grade crossing. A control unit in communication with the transceiver is configured to monitor the received signal and, based upon a determined location of the train relative to the train crossing, issue a command to the train's brake system to reduce the speed of the train, or stop the train, before the train reaches the grade crossing.
Abstract:
An intra-train network management system is provided for a train having up to three or more train units. Each train unit consists of two terminal cars and zero or more intermediate cars between the terminal cars. A communications interface unit in each terminal car establishes at least two separate networks within its associated train unit. Each network connects to distinct nodes within the train unit, and the separate networks of coupled train units are crossed over. A gateway associated with each terminal car links the respective networks of separate train units coupled into a train. The network management determines the network topology by sending global device discovery messages throughout the network, and local discovery messages within each train unit that cannot penetrate the gateway(s) associated with that train unit. The local discovery messages resolve the ambiguity created by the global messages.
Abstract:
Apparatus and methods for a grade crossing protection system include at least one camera providing surveillance of a grade crossing, the at least one camera coupled to a transmitter configured to transmit a signal that includes imagery of the grade crossing to a transceiver onboard a train. A display unit onboard the train is provided to allow the train operator to view the grade crossing. A control unit in communication with the transceiver is configured to monitor the received signal and, based upon a determined location of the train relative to the train crossing, issue a command to the train's brake system to reduce the speed of the train, or stop the train, before the train reaches the grade crossing.
Abstract:
A method of communication-based train control system migration includes scanning a guideway to generate surveying data and processing surveying data to calculate a 3-D representation of the guideway. Appropriate locations are determined for the communication-based control devices on the guideway. Communication-based train control devices are installed in a guideway at the determined appropriate locations and vehicles are retrofitted with an autonomy platform. Testing of the control devices and retrofit vehicles is performed. A communication-based train control system is used to control the retrofit vehicles when they operate within the guideway.
Abstract:
A system comprises a set of sensors on a first end of a vehicle having the first end and a second end, and a controller. The sensors are configured to generate corresponding sensor data based on a detected object along a direction of movement of the vehicle. The controller is configured to compare a time at which the first sensor detected the object with a time at which the second sensor detected the object to identify the first end or the second end as a leading end of the vehicle, and to calculate a position of the leading end of the vehicle based on the sensor data generated by one or more of the first sensor or the second sensor. The controller is also configured to generate a map of the plurality of objects based on the sensor data.
Abstract:
An SIL 4 over-speed protection device for a rail vehicle includes a first logical unit configured to be connected to a first power source, a first speed sensor and a first vital supervision circuit and a second logical unit configured to be connected to a second power source, a second speed sensor and a second vital supervision circuit. The first logical unit is configured to determine if the second logical unit is functioning properly and the second logical unit is configured to determine if the first logical unit is functioning properly.
Abstract:
A circuit for controlling an input current, the circuit includes a first input port configured to receive the input current. A current detector detects an input current value of the input current and generates a control signal indicative of the input current value. A first output port outputs an output current to a load. A second output port receives the output current from the load. A control circuit provides a low-impedance path in parallel with the load in response to the control signal indicating the input current value is below a threshold value.