摘要:
In the mass production of dielectric resonator oscillators (DROs), it is necessary to regulate the position where a dielectric resonator is placed with a high degree of accuracy and thus time required for the assembly work increases undesirably. Further, a terminating resistor and earthing means are formed at an end of a transmission line that is electromagnetically coupled to the dielectric resonator and constitutes the resonator on a dielectric substrate, and as a result the production cost increases. The present invention is characterized in that, in the components of a DOR, only a transmission line is formed on a dielectric substrate, and an oscillating active element and a terminating resistor and the earthing means on an MMIC chip are connected to the transmission line with metallic wires, metallic ribbons, or the like. Further, an open stub is formed in the middle of the transmission line on the side close to the oscillating active element when it is viewed from the dielectric resonator.
摘要:
In the present invention, a solution containing a target substance is atomized into a mist by ultrasonic oscillation in an ultrasonic atomization chamber, and the target substance is collected by aggregating the atomized mist in a collection chamber, whereby the target substance is separated from the solution. Further, in the present invention, the gas phase pressure in the collection chamber is maintained to be higher than an atmospheric pressure, whereby the saturation vapor pressure of the target substance in the gas phase is made lower than the saturation vapor pressure under atmospheric pressure.
摘要:
In a millimeter waveband transceiver using an antenna and a waveguide for a connection line, it is necessary to perform transmission mode line conversion between TEM waves of a microstrip line and VTE01 mode waves of the waveguide. There is a limit to reducing the conversion loss using only a matching box for connecting the microstrip line with the waveguide. In a transmission mode line transducer for converting between the TEM waves of the microstrip line and the VTE01 mode waves of the waveguide, if the cross-sections are substantially the same size, in the case of a 50Ω microstrip line when the characteristic impedance of the waveguide is about 80%, i.e., 40Ω, the line conversion loss can be optimized. Therefore, the microstrip line is connected with the waveguide using a λ/4 matching box via a ridged waveguide having a low impedance and a length of λ/16 or less.
摘要:
In a method and apparatus for separating a solution, the solution containing a target substance is atomized into a mist in an atomizer (1) to produce a mixed fluid of mist and air. In the collection of the mist from this mixed fluid, an air transmission membrane (51) is used, and the air transmission membrane has a pore size that transmits air but does not transmit the target substance contained in the mist. The mixed fluid is brought into contact with the primary surface of the air transmission membrane (51), and the pressure on the primary surface is made higher than the pressure on the secondary surface of the opposite side. Thereby, the air in the mixed fluid is allowed to pass through the air transmission membrane (51) to separate part or all of the air contained in the mixed fluid.
摘要:
An ultrasonic solution separator including an ultrasonic atomization chamber supplied with a solution containing a target material; an ultrasonic oscillator producing mist from the solution in the ultrasonic atomization chamber with ultrasonic oscillation; a power supply for ultrasonics connected to the ultrasonic oscillator, and a collection portion transporting the mist produced by the ultrasonic oscillator with a carrier gas and aggregating and collecting the mist included in the carrier gas. The power supply supplying high-frequency power to the ultrasonic oscillator so that the ultrasonic oscillator oscillates at an ultrasonic frequency. The ultrasonic separator aggregates and collects the mist produced in the ultrasonic atomization chamber by means of the collection portion. With this ultrasonic solution separator, the temperature of carrier gas in the ultrasonic atomization chamber is at least 5° C. higher than the carrier gas in the collection portion.
摘要:
An ultrasonic solution separating method wherein a solution is ultrasonically vibrated and atomized into mist in a carrier gas in an ultrasonic atomizing chamber (4) and the carrier gas including atomized mist is transferred to a collecting part (5) and in the collecting part (5) the mist component comprising solution atomized into mist is separated from the carrier gas. In the ultrasonic solution separating method, in the collecting part (5), mist component is separated from the carrier gas in an adsorbing step of causing mist component to be adsorbed onto an adsorbing agent (15) by bringing the carrier gas including mist component into contact with the adsorbing agent (15) and a separating step of separating mist component adsorbed onto the adsorbing agent (15) in the adsorbing step from the adsorbing agent (15), and mist component is separated from the carrier gas with the pressure of the separating step being made lower than the pressure of adsorbing step.
摘要:
In the present invention, petroleum is separated into hydrocarbon mixtures having different components at an atomizing step and a collecting step. At the atomizing step, the petroleum is ultrasonically vibrated and is discharged and atomized in a state of an atomized fine particle floating in a carrier gas. At this step, the petroleum is separated into a mixed fluid containing the atomized fine particle and the carrier gas and residual petroleum which is not atomized. At the collecting step, the hydrocarbon mixture is separated and collected from the mixed fluid obtained at the collecting step. In the separating method, the petroleum is separated into the residual petroleum and the mixed fluid at the atomizing step, and the mixed fluid is collected at the collecting step so that the petroleum is separated into hydrocarbon mixtures having different components.
摘要:
A catalyst component is disclosed for use in the homo- or copolymerization of olefinic hydrocarbons. The catalyst component is comprised of a first compound of the formula M.sup.1 (OR.sup.1).sub.p R.sup.2.sub.q X.sup.1.sub.4-p-q, M.sup.1 being titanium a second compound of the formula M.sup.2 (OR.sup.3).sub.m R.sup.4.sub.n X.sup.2.sub.z-m-n, with M.sup.2 being a metal of Groups Ia-IIIa or IIb of the Periodic Table, and a third compound which is an organocyclic compound having two or more conjugated double bonds. A process is also disclosed for the production of hydrocarbon polymers in which the above catalyst component is combined with a modified organoaluminum compound to form a catalyst composition capable of providing controlled molecular weight, wide distribution thereof and other desirable qualities in the polymer product.
摘要:
A catalyst component is disclosed for use in the homo- or copolymerization of olefinic hydrocarbons. The catalyst component is comprised of a first compound of the formula Me.sup.1 (OR.sup.1).sub.p R.sup.2.sub.q X.sup.1.sub.4-p-q, a second compound of the formula Me.sup.2 (OR.sup.3).sub.m R.sup.4.sub.n X.sup.2.sub.z-m-n and a third compound which is an organocyclic compound having two or more conjugated double bonds. A process is also disclosed for the production of hydrocarbon polymers in which the above catalyst component is combined with a modified organoaluminum compound to form a catalyst composition capable of providing controlled molecular weight, wide distribution thereof and other desirable qualities in the polymer product.
摘要:
A hole transporting material is constituted by a compound represented by the following general formula (1): ##STR1## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4 and R.sup.5, which may be the same or different, are each independently hydrogen or a hydrocarbon residue having 1 to 20 carbon atoms; Ar.sup.1 and Ar.sup.2 are each independently a divalent hydrocarbon residue; l is an integer of 0 or more; m is an integer of 1 or more; and n is an integer of 2 or more.