摘要:
A refrigerant system operates in a transcritical regime. An economizer circuit is incorporated into the refrigerant system, and includes an economizer injection line for refrigerant injection above the critical point. In one of the disclosed embodiments, the refrigerant utilized is CO2.
摘要:
A refrigerant system is provided with pulse width modulation control to adjust the amount of refrigerant compressed by a compressor. In one embodiment, a pulse width modulation control controls a suction modulation valve cycled between open and closed positions. In a second embodiment, the compressor itself is cycled between a position at which it compresses refrigerant and a position at which the compression elements are disengaged. In either embodiment, the control also cycles the expansion device in concert with cycling the pulse width modulation valve or the compressor. In this manner, pressure fluctuations in the refrigerant system do not exceed desirable levels. Typical cycle time for pulse width modulation control is between 5 and 30 seconds, and typical offset (delay) time for an expansion device may be between 0 and 3 seconds.
摘要:
An economized refrigerant vapor compression system (10) for water heating includes a refrigerant compression device (20), a refrigerant-to-water heat exchanger (30), an economizer heat exchanger (60), an evaporator (40) and a refrigerant circuit (70) providing a first flow path (OA, 70B, 70C, 70D) connecting the compression device (20), the refrigerant-to-liquid heat exchanger (30), the economizer heat exchanger (60) and the evaporator (40) in refrigerant circulation flow communication and a second flow path (70E) connecting the first flow path (62) through the economizer heat exchanger (60) to the compression device (20). The economizer heat exchanger (60) has a first pass (62) for receiving a first portion of the refrigerant having traversed he refrigerant-to-liquid heat exchanger and a second pass (64) for receiving a second portion of the refrigerant having traversed the refrigerant-to-liquid heat exchanger. The refrigerant system (10) has a bypass unloading branch (70F) with a c pass flow control device (92) connecting economizer (70E) and suction (OD) refrigerant lines for providing additional capacity adjustment.
摘要:
An adequate operation and performance of a refrigerant system includes the steps of adding a refrigerant that is different from the original refrigerant, into the refrigerant system should any operational problems be observed during operation of the refrigerant system. As an example, should the refrigerant system be cycling frequently, a lower pressure refrigerant may be added or replace, partially or fully, the refrigerant the system being initially charged with. By making this change, the present invention can, for example, lower the provided system capacity, and hence reduce the amount of cycling. Additionally, conditioned space comfort and system reliability would be improved. Further, changes over time, such as the degradation of the heat exchanger performance, and their negative effect on system operation can be alleviated by such a refrigerant substitution.
摘要:
Methods and apparatus are provided for enhancing the performance of rooftop air conditioning systems by operating such systems with an economizer cycle and utilizing a blend incorporating R32 and R125 refrigerants as a working medium, wherein such benefits are related to at least the performance (e.g. capacity and/or the energy efficiency ratio) of the rooftop air conditioning system operating at various environments (e.g. temperatures at and above 95° F.).
摘要:
A refrigerant system is provided with at least one variable frequency drive. In the past, the variable frequency drives were operable such that the voltage-to-frequency ratio remained constant regardless of operation. The present invention realizes that variations in the voltage-to-frequency ratio may be desirable, and the refrigerant system control drives the motors associated with relevant refrigerant system components to reach an optimum voltage-to-frequency ratios in order to achieve higher efficiency, provide operational safety and prevent nuisance shutdowns.
摘要:
An HVAC & R system controller is provided with time pricing information for electricity and/or natural gas. This pricing information is utilized to determine the most efficient system configuration and operation schedule to achieve desired conditions in an indoor environment. As an example, if electricity prices are high, then the controller might rely on a natural gas powered furnace, rather than on the higher-electricity consuming heat pump. In another example, thermal storage media can be charged during off-peak hours when cost of electricity is low and release its thermal potential during high demand periods.
摘要:
A refrigerant system has at least one unloader valve selectively communicating refrigerant between the compressor compression chambers and a point upstream of the evaporator. When the compressor is run in unloaded mode, partially compressed refrigerant is returned to a point upstream of the evaporator. In an unloaded mode, a higher refrigerant mass flow rate passes through the evaporator, as compared to prior art where the by-passed refrigerant was returned downstream of the evaporator. This increases system efficiency by more effectively returning oil which otherwise might be left in the evaporator back to the compressor. Also, the amount of refrigerant superheat entering the compressor in unloaded operation is reduced as compared to the prior art compressor systems, wherein the by-passed refrigerant is returned directly to the compressor suction line. Reduced refrigerant superheat increases system efficiency, improves motor performance and reduces compressor discharge temperature. Also, by moving the unloader line further away from the compressor, the compressor replacement is simplified as there is no connecting unloader line directly in front of the compressor.
摘要:
A refrigerant system with an economizer cycle incorporates a time dependant vapor injection scheme to reduce losses and enhance performance. The benefits of such an approach are particularly pronounced at low pressure ratios typical of air conditioning applications. The injection of refrigerant occurs during a limited time interval and at a particular point of time into a compression cycle. The vapor injection preferably occurs when the compression chamber are sealed (or about to be sealed off) from a suction port and continues until refrigerant pressure in the compression chambers is equal (or about to be equal) to the pressure at the injection line. This communication time constitutes about 35% of time of one revolution. In one embodiment, such time dependence of refrigerant vapor injection is provided by a specific compressor design. In another embodiment, a fast-acting solenoid valve is placed at the vicinity of the injection port to control the initiation and duration of the injection process. The benefits for an unloading scheme are disclosed as well.
摘要:
A parallel flow (minichannel or microchannel) evaporator includes channels which are crimped at or adjacent to their entrance location which provides for a refrigerant expansion and pressure drop control resulting in the elimination of refrigerant maldistribution in the evaporator and prevention of potential compressor flooding. Progressive crimping to counter-balance factors effecting refrigerant distribution is also disclosed.