Optical input polarization management device and associated methods

    公开(公告)号:US11561347B2

    公开(公告)日:2023-01-24

    申请号:US17353782

    申请日:2021-06-21

    Abstract: An optical input polarization management device includes a polarization splitter and rotator (PSR) that directs a portion of incoming light having a first polarization through a first optical waveguide (OW). The PSR rotates a portion of the incoming light having a second polarization to the first polarization so as to provide polarization-rotated light. The PSR directs the polarization-rotated light through a second OW. Light within the first and second OW's is input to a first two-by-two optical splitter (2×2OS). A first phase shifter (PS) is interfaced with either the first or second OW. Light is output from the first 2×2OS into a third OW and a fourth OW. Light within the third and fourth OW's is input to a second 2×2OS. A second PS is interfaced with either the third or fourth OW. Light is output from the second 2×2OS into a fifth OW for further processing.

    Chip-to-Chip Optical Data Communication System

    公开(公告)号:US20220171142A1

    公开(公告)日:2022-06-02

    申请号:US17671525

    申请日:2022-02-14

    Abstract: An optical input/output chiplet is disposed on a first package substrate. The optical input/output chiplet includes one or more supply optical ports for receiving continuous wave light. The optical input/output chiplet includes one or more transmit optical ports through which modulated light is transmitted. The optical input/output chiplet includes one or more receive optical ports through which modulated light is received by the optical input/output chiplet. An optical power supply module is disposed on a second package substrate. The second package substrate is separate from the first package substrate. The optical power supply module includes one or more output optical ports through which continuous wave laser light is transmitted. A set of optical fibers optically connect the one or more output optical ports of the optical power supply module to the one or more supply optical ports of the optical input/output chiplet.

    Ring Resonator with Integrated Photodetector for Power Monitoring

    公开(公告)号:US20220146306A1

    公开(公告)日:2022-05-12

    申请号:US17582900

    申请日:2022-01-24

    Abstract: A ring resonator device includes a passive optical cavity having a circuitous configuration into which is built a photodetector device. The photodetector device includes a first implant region formed within the passive optical cavity that includes a first type of implanted doping material. The photodetector device includes a second implant region formed within the passive optical cavity that includes a second type of implanted doping material, where the second type of implanted doping material is different than the first type of implanted doping material. The photodetector device includes an intrinsic absorption region present within the passive optical cavity between the first implant region and the second implant region. A first electrical contact is electrically connected to the first implant region and to a detecting circuit. A second electrical contact is electrically connected to the second implant region and to the detecting circuit.

    Pooled DRAM system enabled by monolithic in-package optical I/O

    公开(公告)号:US11233580B2

    公开(公告)日:2022-01-25

    申请号:US17175678

    申请日:2021-02-14

    Abstract: A computer memory system includes an electro-optical chip, an electrical fanout chip electrically connected to an electrical interface of the electro-optical chip, and at least one dual in-line memory module (DIMM) slot electrically connected to the electrical fanout chip. A photonic interface of the electro-optical chip is optically connected to an optical link. The electro-optical chip includes at least one optical macro that converts outgoing electrical data signals into outgoing optical data signals for transmission through the optical link. The optical macro also converts incoming optical data signals from the optical link into incoming electrical data signals and transmits the incoming electrical data signals to the electrical fanout chip. The electrical fanout chip directs bi-directional electrical data communication between the electro-optical chip and a dynamic random access memory (DRAM) DIMM corresponding to the at least one DIMM slot.

    TeraPHY Chiplet Optical Input/Output System

    公开(公告)号:US20210286129A1

    公开(公告)日:2021-09-16

    申请号:US17184537

    申请日:2021-02-24

    Abstract: An electro-optical chip includes an optical input port, an optical output port, and an optical waveguide having a first end optically connected to the optical input port and a second end optically connected to the optical output port. The optical waveguide includes one or more segments. Different segments of the optical waveguide extends in either a horizontal direction, a vertical direction, a direction between horizontal and vertical, or a curved direction. The electro-optical chip also includes a plurality of optical microring resonators is positioned along at least one segment of the optical waveguide. Each microring resonator of the plurality of optical microring resonators is optically coupled to a different location along the optical waveguide. The electro-optical chip also includes electronic circuitry for controlling a resonant wavelength of each microring resonator of the plurality of optical microring resonators.

    Electro-Optical Interface Module and Associated Methods

    公开(公告)号:US20200021384A1

    公开(公告)日:2020-01-16

    申请号:US16510824

    申请日:2019-07-12

    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module. The TORminator module coverts the multiple uplink optical data signals to multiple uplink electrical data signals, and transmits the multiple uplink electrical data signals to the rack switch.

    Laser Module for Optical Data Communication System

    公开(公告)号:US20180019820A1

    公开(公告)日:2018-01-18

    申请号:US15650586

    申请日:2017-07-14

    Abstract: A laser module includes a laser source and an optical marshalling module. The laser source is configured to generate and output a plurality of laser beams. The plurality of laser beams have different wavelengths relative to each other. The different wavelengths are distinguishable to an optical data communication system. The optical marshalling module is configured to receive the plurality of laser beams from the laser source and distribute a portion of each of the plurality of laser beams to each of a plurality of optical output ports of the optical marshalling module, such that all of the different wavelengths of the plurality of laser beams are provided to each of the plurality of optical output ports of the optical marshalling module. An optical amplifying module can be included to amplify laser light output from the optical marshalling module and provide the amplified laser light as output from the laser module.

Patent Agency Ranking