Abstract:
Beamforming feedback frame formats within multiple user, multiple access, and/or MIMO wireless communications. A transmitting wireless communication device (TX) transmits a sounding frame to one or more receiving wireless communication devices (RXs) using one or more antennae and one or more clusters. Any antenna/cluster combination may be employed in communications between TXs and RXs. The one or more RXs receive/process the sounding frame to determine a type of beamforming feedback frame to be provided to the TX. Any one of a variety of beamforming feedback frame types and a types of information may be contained within a respective beamforming feedback frame including various characteristics of the respective communication channel between the TX and each of the various RXs. A common beamforming feedback frame format may be supported and employed by all such wireless communication devices (e.g., TX and RXs) when performing MU-MIMO operation such as in accordance with IEEE 802.11ac/VHT.
Abstract:
Communications are coordinated between different respective wireless communication device groups in a multiple delivery traffic indication map (DTIM) per device signaling scheme. Different respective wireless communication devices (e.g., wireless stations (STAs)) may communicate with a manager/coordinator wireless communication device (e.g., access point (AP)) at different times and for different reasons. The manager/coordinator wireless communication device generates and transmits beacons to the wireless communication devices specifying times during which communications may be supported with the manager/coordinator wireless communication device. A restricted access window (RAW) information element (IE) within a beacon includes at least one restricted access window (RAW) to specify a wireless communication device authorized to communicate with the manager/coordinator wireless communication device. Different wireless communication device groups may communicate with the manager/coordinator wireless communication device at different periodicities, and any one wireless communication device may be included in more than one wireless communication device group.
Abstract:
Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications. In accordance with wireless communications, a signal (SIG) field employed within such packets is distributed or partitioned into at least two separate signal fields (e.g., SIG A and SIG B) that are located in different portions of the packet. A first of the SIG fields includes information that may be processed and decoded by all wireless communication devices, and a second of the SIG fields includes information that is specific to one or more particular wireless communication devices (e.g., a specific wireless communication device or a specific subset of the wireless communication devices).The precise locations of the at least first and second SIG fields within a packet may be varied, including placing a second of the SIG fields (e.g., including user-specific information) adjacent to and preceding a data field in the packet.
Abstract:
Backoff snooze wake power consumption within single user, multiple user, multiple access, and/or MIMO wireless communications. If a communication (e.g., transmission) attempt fails (e.g., by a wireless station (STA), smart meter station (SMSTA), etc.), then a backoff snooze countdown may be performed before a subsequent communication is attempted. Also, if communication activity is detected on the communication medium, then such a backoff snooze countdown may be performed before monitoring the communication medium or a subsequent communication attempt is made. Such a backoff snooze countdown may be based on a codeword value (e.g., such as provided within a beacon received from an access point (AP)), and different respective backoff snooze countdowns may be made based on different respective codeword values. Such backoff snooze countdowns are performed outside of a restricted access window (RAW) in which only devices of a particular class (e.g., low-power, Z, etc.) have access to the communication medium.
Abstract:
A transceiver of an apparatus supports communication with at least one additional apparatus. A baseband processing module indicates that first frame classification information includes at least a portion of MAC header content of a MAC frame via a filter and classification agreement included in the communication between the apparatus and the at least one additional apparatus.
Abstract:
Techniques for localized dynamic channel allocation help meet the challenges of latency, memory size, and channel time optimization for wireless communication systems. As examples, advanced communication standards, such as the WiGig standard, may support wireless docking station capability and wireless streaming of high definition video content between transmitting and receiving stations, or engage in other very high throughput tasks. The techniques help to deliver the desired user experience in such an environment and support desired performance levels for latency and throughput while controlling memory footprint.
Abstract:
Preamble and header bit allocation for power savings within multiple user, multiple access, and/or MIMO wireless communications. Within a multi-user packet, information (e.g., partial address information) related to a recipient group of wireless communication devices (e.g., as few as one wireless communication device or any subset of a number of wireless communication devices, sometimes including all of the wireless communication devices) is emplaced within a PHY (e.g., physical layer) header of such a multi-user packet to be communicated within a multi-user (MU) environment. Such recipient indicating information can be encoded with relatively higher robustness (e.g., lower coding rates, lower ordered modulation, cyclic redundancy check (CRC), etc.) that remaining portions of the multi-user packet. Various portions of the remainder of the multi-user packet may respectively correspond to different wireless communication devices (e.g., a first field for a first wireless communication device, a second field for a second wireless communication device, etc.).
Abstract:
A relay wireless communication device is discovered using probe request. A source device that intends to transmit one or more frames to a destination device transmits the probe request to request a probe response from one or more potential relay devices. A relay device transmits a probe response to the source device when the relay device may operate to forward the one or more frames from the source device to the destination device. The relay device employs one or more considerations to determine its eligibility to serve as relay for the source and destination devices. The source device selects one of the potential relay devices based on their provided probe responses. The source device may select an optimal relay device based upon two or more received probe responses.
Abstract:
A transceiver of an apparatus supports communication with at least one additional apparatus. A processing module processes at least a portion of media access control (MAC) header content of a MAC frame within a signal received via the at least one transceiver or generated internally. In particular, the MAC header content, and optionally the MAC payload content, is processed based on a filter and classification agreement between the apparatus and the at least one additional apparatus to classify the MAC frame.
Abstract:
Channel characterization and training within multiple user, multiple access, and/or MIMO wireless communications. Within such communication systems, there can be a number of devices (e.g., STAs) that communicate with a single device (e.g., AP). A multi-cast sounding frame may be transmitted from a transmitting device to a number of receiving devices. Appropriate scheduling or ordering of feedback signals from some or all of the receiving devices may be performed explicitly (e.g., sounding frame sent from the transmitting device to a receiving device) or implicitly (e.g., control information sent from the transmitting device to the receiving device, sounding frame sent to the transmitting device from the receiving device). Such characterization and training is with respect to a channel or path in which data will subsequently follow. Such characterization and training can be performed in accordance with group membership (e.g., with respect to only some of the receiving devices).