摘要:
Bandwidth efficient coded modulation scheme based on MLC (Multi-Level Code) signals having multiple maps. The use of multiple maps is adapted to various types of coded signals including multi-level LDPC coded modulation signals and other MLC signals to provide for a significant performance gain in the continual effort trying to reach towards Shannon's limit. In the instance of LDPC coded signals, various level LDPC codewords (e.g., an MLC block) are generated from individual corresponding LDPC encoders. These various level LDPC codewords are arranged into a number of sub-blocks that corporately form an MLC block. Encoded bits from levels of the MLC block are arranged to form symbols that are mapped according to at least two modulations. Each modulation includes a constellation shape and a corresponding mapping. This use of multiple mappings provides for improved performance when compared to encoders that employ only a single mapping.
摘要:
Determination of variable code rates for a rate control sequence. A rate control sequence governs symbols that are to be encoded and/or decoded. A different rate control value may be used to control code rates of individual symbols in a signal. The determination of the variable code rates may be performed based on a number of parameters including a communication system's operating conditions and/or the signal to noise ratio (SNR) of a communication channel. The variable code rates may also adaptively change, in real time (if desired), in response to the communication system's operating conditions including a communication channel's SNR. The variable code rate functionality may also be adaptively tailored to match the SNR of a communication receiver's communication channel within a multi-receiver communication system; those receivers in a beam spot (higher SNR) may operate using a higher code rate than those receivers further away from the spot (lower SNR).
摘要:
Stopping or reducing oscillations in Low Density Parity Check (LDPC) codes. A novel solution is presented that completely eliminates and/or substantially reduces the oscillations that are oftentimes encountered with the various iterative decoding approaches that are employed to decode LDPC coded signals. This novel approach may be implemented in any one of the following three ways. One way involves combining the Sum-Product (SP) soft decision decoding approach with the Bit-Flip (BF) hard decision decoding approach in an intelligent manner that may adaptively select the number of iterations performed during the SP soft decoding process. The other two ways involve modification of the manner in which the SP soft decoding approach and the BF hard decision decoding approach are implemented. One modification involves changing the initialization of the SP soft decoding process, and another modification involves the updating procedure employed during the SP soft decoding approach process.
摘要:
Bandwidth efficient coded modulation scheme based on MLC (Multi-Level Code) signals having multiple maps. The use of multiple maps is adapted to various types of coded signals including multi-level LDPC coded modulation signals and other MLC signals to provide for a significant performance gain in the continual effort trying to reach towards Shannon's limit. In the instance of LDPC coded signals, various level LDPC codewords are generated from individual corresponding LDPC encoders. These various level LDPC codewords are arranged into a number of sub-blocks. Encoded bits from multiple level LDPC codewords within each of the sub-blocks are arranged to form symbols that are mapped according to at least two modulations. Each modulation includes a constellation shape and a corresponding mapping. This use of multiple mappings provides for improved performance when compared to encoders that employ only a single mapping.
摘要:
Low Density Parity Check (LDPC) code decoder using min*, min**, max* or max** and their respective inverses. For the first time, min* processing is demonstrated for use in decoding LDPC-coded signals. In addition, max*, min**, or max** (and their respective inverses) may also be employed when performing calculations that are required to perform decoding of signals coded using LDPC code. These new parameters may be employed to provide for much improved decoding processing for LDPC codes when that decoding involves the determination of a minimal and/or maximal value, or a minimal and/or maximal log corrected value, from among a number of possible values. The total number of processing steps employed within the decoding of an LDPC-coded signal is significantly reduced be employing the min*, max*, min**, or max** (and their respective inverses) decoding processing described herein.
摘要:
Metric calculation design for variable code rate decoding of broadband trellis, TCM (trellis coded modulated), or TTCM (turbo trellis coded modulation). A single design can accommodate a large number of code rates by multiplexing the appropriate paths within the design. By controlling where to scale for any noise of a received symbol within a received signal, this adaptable design may be implemented in a manner that is very efficient in terms of performance, processing requirements (such as multipliers and gates), as well as real estate consumption. In supporting multiple code rates, appropriately selection of the coefficients of the various constellations employed, using the inherent redundancy and symmetry along the I and Q axes, can result in great savings of gates borrowing upon the inherent redundancy contained therein; in addition, no subtraction (but only summing) need be performed when capitalizing on this symmetry.
摘要:
A method for asymmetrical MIMO wireless communication begins by determining a number of transmission antennas for the asymmetrical MIMO wireless communication. The method continues by determining a number of reception antennas for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas exceeds the number of reception antennas, using spatial time block coding for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas does not exceed the number of reception antennas, using spatial multiplexing for the asymmetrical MIMO wireless communication.
摘要:
Algebraic method to construct LDPC (Low Density Parity Check) codes with parity check matrix having CSI (Cyclic Shifted Identity) sub-matrices. A novel approach is presented by which identity sub-matrices undergo cyclic shifting, thereby generating CSI sub-matrices that are arranged forming a parity check matrix of an LDPC code. The parity check matrix of the LDPC code may correspond to a regular LDPC code, or the parity check matrix of the LDPC code may undergo further modification to transform it to that of an irregular LDPC code. The parity check matrix of the LDPC code may be partitioned into 2 sub-matrices such that one of these 2 sub-matrices is transformed to be a block dual diagonal matrix; the other of these 2 sub-matrices may be modified using a variety of means, including the density evolution approach, to ensure the desired bit and check degrees of the irregular LDPC code.
摘要:
LDPC (Low Density Parity Check) coded signal decoding using parallel and simultaneous bit node and check node processing. This novel approach to decoding of LDPC coded signals may be described as being LDPC bit-check parallel decoding. In some alternative embodiment, the approach to decoding LDPC coded signals may be modified to LDPC symbol-check parallel decoding or LDPC hybrid-check parallel decoding. A novel approach is presented by which the edge messages with respect to the bit nodes and the edge messages with respect to the check nodes may be updated simultaneously and in parallel to one another. Appropriately constructed executing orders direct the sequence of simultaneous operation of updating the edge messages at both nodes types (e.g., edge and check). For various types of LDPC coded signals, including parallel-block LDPC coded signals, this approach can perform decoding processing in almost half of the time as provided by previous decoding approaches.
摘要:
A method for asymmetrical MIMO wireless communication begins by determining a number of transmission antennas for the asymmetrical MIMO wireless communication. The method continues by determining a number of reception antennas for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas exceeds the number of reception antennas, using spatial time block coding for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas does not exceed the number of reception antennas, using spatial multiplexing for the asymmetrical MIMO wireless communication.