Abstract:
Data estimation is performed in a wireless communication system using both oversampling and multiple reception antennas. A receive vector is produced for each antenna at a sampling interval which is a multiple of the chip rate of the received signal. A channel response matrix is produced for each antenna at a preferred multiple of the sampling rate. Each receive vector is processed using a sliding window based approach, where a plurality of successive windows are processed. For each window, a combined circulant channel response matrix is produced using the channel response matrices. Using the combined circulant channel response matrix and a combined received vector comprising each received vector in a discrete Fourier transform based approach to estimate a data vector corresponding to that window; and combining the data vector estimated in each window to form a combined data vector.
Abstract:
The present invention discloses a group based communication method, including: initiating, by a communication initiating client, a connection request containing a recipient identifier to a backstage server; forwarding, by the backstage server, the connection request to a communication recipient client corresponding to the recipient identifier; and establishing, by the communication recipient client, a short connection channel or long connection channel to the communication initiating client according to a type of the connection request and performing a communication supported by the short connection channel or the long connection channel with the communication initiating client. The present invention also discloses a group based communication system and client. The method, system and client provided by the present invention brings out much richer communication and interaction between communicating users, who not only can transmit text data, but also can transmit file and audio/video data.
Abstract:
A user equipment includes an estimator. The estimator is configured to select a first estimate of a signal-to-noise (SNR) ratio, calculate a first amplitude and first noise variance, calculate a second amplitude and a second noise variance, calculate a second SNR, calculate a resolution value, adjust the first SNR, and perform estimation iterations until the resolution value is equal to a predetermined value.
Abstract:
A block linear equalizer (BLE) using an approximate Cholesky decomposition is disclosed. The BLE includes channel estimators, a channel monitor unit, a noise power estimator, a parameter selection unit and an approximate Cholesky processor. The channel estimator generates a channel estimate vector from received samples. The channel monitor unit generates a first channel monitor signal for a truncated channel estimate vector and a second channel monitor signal. The noise power estimator estimates a noise power of the received samples. The parameter selection unit selects parameters for approximate Cholesky decomposition based on the first and second channel monitor signals. The approximate Cholesky processor performs block linear equalization on the received samples based on approximate Cholesky decomposition.
Abstract:
Methods for generating a three-dimensional visualization image of an object, such as an internal organ, using volume visualization techniques are provided. The techniques include a multi-scan imaging method; a multi-resolution imaging method; and a method for generating a skeleton of a complex three dimension object. The applications include virtual cystoscopy, virtual laryngoscopy, virtual angiography, among others.
Abstract:
A Wireless bridge conjoins two previously incompatible technologies within a single device to leverage the strengths of each. The Wireless bridge marries the Personal Area Network (PAN) technology of Bluetooth as described in Bluetooth Specification Version 1.0B with the Wireless Local Area Network (WLAN) technology described in the IEEE802.11a specification to provide a wireless system level solution for peripheral devices to provide Internet service interactions. The invention brings together in a single working device implementations of these technologies so they do not interfere or disrupt the operation of each other and instead provide a seamless transition of a Bluetooth connection to Wireless Local Area Network/Internet connection. From the Wireless Local Area Network perspective the inventive wireless bridge extension allows a Bluetooth-enabled device to roam from one Wireless Access Point (bridge) to the next without losing its back end connection. The invention takes into account the minimum separation and shielding required of these potentially conflicting technologies to inter-operate.
Abstract:
The present invention has many aspects. One aspect of the invention is to perform equalization using a sliding window approach. A second aspect reuses information derived for each window for use by a subsequent window. A third aspect utilizes a discrete Fourier transform based approach for the equalization. A fourth aspect relates to handling oversampling of the received signals and channel responses. A fifth aspect relates to handling multiple reception antennas. A sixth embodiment relates to handling both oversampling and multiple reception antennas.
Abstract:
A receiver which suppresses inter-cluster multipath interference by processing an impulse channel response consisting of two multipath clusters, each cluster having groups of signals with multiple delays. In one embodiment, the receiver includes a single antenna and parallel-connected delay units used to align the groups of signals before being input into respective sliding window equalizers. The outputs of the equalizers are combined at chip level via a combiner which provides a single output. In another embodiment, a Cluster Multipath Interference Suppression (CMIS) circuit is incorporated into the receiver. The CMIS circuit includes a hard decision unit and a plurality of signal regeneration units to generate replicas of the multipath clusters. The replicas are subtracted from the respective outputs of the delay units and the results are input to the respective sliding window equalizers. In another embodiment, multiple antennas are used to receive and process the clusters.