Abstract:
Skipping, spreading or otherwise metering signaling across multiple transmission opportunities is contemplated. The contemplated signal processing may be beneficial in ameliorating the influence of burst noise and other interferences on signal transmissions. The contemplated signal processing may be operable to facilitate supplementing and/or replacing other error correction techniques aimed at reducing signaling interference.
Abstract:
Systems and methods presented herein provide for monitoring of noise and other interfering energy on a communication link. One system includes an interface coupled to the communication link to receive a signal conveyed over the communication link. The system also includes a monitor operable to: track energy across a frequency spectrum of the signal conveyed over the communication link for a predetermined period of time; flag, at intervals of the predetermined period of time, energy levels across the frequency spectrum of the signal that breach a threshold energy level to identify where in the frequency spectrum a breach of the threshold energy level occurs; and add the flags to determine how long the threshold energy level was breached during the predetermined period of time.
Abstract:
A method to capture random data signals at an end point in a broadband network and process them via digital signal processing (DSP) techniques to determine both linear distortions and nonlinear distortions. In a distribution network, such as a tree and branch cable network, the location of the impairment addition can be identified by determining location of terminals have a distortion and locations of terminals that do not have a distortion. Linear distortions may be determined by an autocorrelation of the captured signal with itself. Nonlinear distortions may be determined by processing measured energy in a vacant band with manufactured energy in the vacant band. If a vacant band is not available, one can be created by demodulating a signal occupying the band, and subtracting the demodulated signal from the measured signal plus interference in a band, leaving only the interference.
Abstract:
A digital (fiber optic) link transports one or more RF digital signal blocks, that when converted into analog and (optionally) converted to a RF center frequency with an D-A converter, form RF analog signal blocks. The RF analog signal block occupies a specified frequency band and is preferably capable of being distributed over a downstream coaxial portion of a HFC network and/or being broadcast. The D-A conversion is performed in a fiber node at a remote location where the transmission medium converts from digital optical fiber preferably to coaxial cable. The multiple RF digital signal blocks may be broadcast to multiple nodes or unicast to a single node. The RF signal blocks allow for any type of band-limited RF signal to be transported. The optical digital traffic to compose a RF analog signal blocks using a D-A converter may be point-to-point Ethernet, or may utilize a software-defined networking controller such as the one described in the OpenFlow™ specification, and may use buffering as necessary.
Abstract:
A modulation transmission technique comprises placing orthogonal subcarriers across an arbitrary-wide band of frequencies without a fixed pre-defined center frequency. Receivers demodulate only the sub-group of subcarriers in which they are to receive data. Thus a broadcast service with many audio programs could send signals across a wide band and receivers would only demodulate the audio channel that the user or users wanted to hear. This saves energy which is important for battery powered devices. A transform bandwidth smaller than the transform bandwidth of the transmitter is used that encompasses the receivers pass band, plus the 2 transition bands (upper and lower) of the linear filter. This technique maintains orthogonality between subcarriers. The subcarriers in the pass band are utilized and the subcarriers in the transition bands are discarded. The orthogonal subcarriers may include both orthogonal frequency division multiplexed and pulse amplitude modulated signals. A notch filter may be included in the receiver to remove unwanted non-orthogonal signals such as a television signal or other interference.
Abstract:
A method of reducing transmission power for an encoded data stream includes the steps of receiving an incoming data stream having equal probability for a plurality of incoming data bits, assigning a symbol scheme to the received data bits of the incoming data stream according to probabilities of occurrence of individual ones of the received data bits, and transmitting an outgoing data stream according to the assigned symbol scheme having a second average transmit power, different than the first average transmit power, for a plurality of outgoing symbols.
Abstract:
An interference canceling subsystem for a bidirectional communications network includes an input interface configured to receive a first data signal from a first transceiver of the network, an output portion configured to receive a second data signal from a second transceiver of the network, a first signal path connecting the input interface to the output portion, a second signal path connecting the output portion to the input interface, and a first interference canceler disposed between the output portion and the input interface along the second signal path. The first signal path is configured to relay the first data signal from the input interface to the output portion. The interference canceler is configured to (i) relay the second data signal from the output portion to the input interface, and (ii) remove portions of the first data signal from the relayed second data signal prior to reaching the input interface.
Abstract:
A method of reducing transmission power for an encoded data stream includes the steps of receiving an incoming data stream having equal probability for a plurality of incoming data bits, assigning a symbol scheme to the received data bits of the incoming data stream according to probabilities of occurrence of individual ones of the received data bits, and transmitting an outgoing data stream according to the assigned symbol scheme having a second average transmit power, different than the first average transmit power, for a plurality of outgoing symbols.
Abstract:
An interference canceling subsystem for a bidirectional communications network includes an input interface configured to receive a first data signal from a first transceiver of the network, an output portion configured to receive a second data signal from a second transceiver of the network, a first signal path connecting the input interface to the output portion, a second signal path connecting the output portion to the input interface, and a first interference canceler disposed between the output portion and the input interface along the second signal path. The first signal path is configured to relay the first data signal from the input interface to the output portion. The interference canceler is configured to (i) relay the second data signal from the output portion to the input interface, and (ii) remove portions of the first data signal from the relayed second data signal prior to reaching the input interface.
Abstract:
A receiver is configured to capture a plurality of linearly distorted OFDM symbols transmitted over a signal path. The receiver forms the captured OFDM symbols into an overlapped compound data block that includes payload data and at least one pseudo-extension, processes the overlapped compound block with circular convolution in the time domain using an inverse channel response, or frequency domain equalization, to produce an equalized compound block, and discards end portions of the equalized block to produce a narrow equalized block. The end portion corresponds with the pseudo-extension, and the narrow block corresponds with the payload data. The receiver cascades multiple narrow equalized blocks to form a de-ghosted signal stream of OFDM symbols. The OFDM symbols may be OFDM or OFDMA, and may or may not include a cyclic prefix, which will have a different length from the pseudo-extension.