Abstract:
Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can use a dual catalyst system containing a zirconium or hafnium based metallocene compound and a titanium based half-metallocene compound containing an indenyl group.
Abstract:
Catalyst compositions containing N,N-bis[2-hydroxidebenzyl]amine transition metal compounds are disclosed. Methods for making these transition metal compounds and for using such compounds in catalyst compositions for the polymerization or oligomerization of alpha olefins also are provided.
Abstract:
The present invention provides a polymerization process utilizing a dual metallocene catalyst system for the production of broad or bimodal molecular weight distribution polymers, generally, in the absence of added hydrogen. Polymers produced from the polymerization process are also provided, and these polymers can have a Mn in a range from about 9,000 to about 30,000 g/mol, and a short chain branch content that decreases as molecular weight increases.
Abstract:
Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 1 g/10 min, a density from 0.93 to 0.965 g/cm3, a CY-a parameter at 190° C. of less than 0.2, an average number of short chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 40,000 to 60,000 g/mol, and an average number of long chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 4,000,000 to 6,000,000 g/mol. The ethylene polymers can be used to fabricate pipes, blown films, and blow molded products, and the ethylene polymers can be produced with a dual catalyst system containing a single atom bridged or two carbon atom bridged metallocene compound with two indenyl groups or an indenyl group and a cyclopentadienyl group, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group with an alkenyl substituent.
Abstract:
A method of determining multimodal polyethylene quality comprising the steps of (a) providing a multimodal polyethylene resin sample; (b) determining, in any sequence, the following: that the multimodal polyethylene resin sample has a melt index within 30% of a target melt index; that the multimodal polyethylene resin sample has a density within 2.5% of a target density; that the multimodal polyethylene resin sample has a dynamic viscosity deviation (% MVD) from a target dynamic viscosity of less than about 100%; that the multimodal polyethylene resin sample has a weight average molecular weight (Mw) deviation (% MwD) from a target Mw of less than about 20%; and that the multimodal polyethylene resin sample has a gel permeation chromatography (GPC) curve profile deviation (% GPCD) from a target GPC curve profile of less than about 15%; and (c) responsive to step (b), designating the multimodal polyethylene resin sample as a high quality resin.
Abstract:
Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 15 g/10 min, a density from 0.91 to 0.945 g/cm3, a CY-a parameter at 190° C. from 0.2 to 0.6, an average number of long chain branches per 1,000,000 total carbon atoms of the polymer in a molecular weight range of 500,000 to 2,000,000 g/mol of less than 5, and a maximum ratio of ηE/3η at an extensional rate of 0.03 sec−1 in a range from 3 to 15. The ethylene polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in the lower molecular weight fraction, such that polymer melt strength and bubble stability are maintained for the fabrication of blown films and other articles of manufacture. These ethylene polymers can be produced using a dual catalyst system containing a single atom bridged metallocene compound with an indenyl group and a cyclopentadienyl group, and an unbridged hafnium metallocene compound with two cyclopentadienyl groups.
Abstract:
Catalyst compositions containing a metallocene compound, a solid activator, and a co-catalyst, in which the solid activator or the supported metallocene catalyst has a d50 average particle size of 15 to 50 μm and a particle size distribution of 0.5 to 1.5, can be contacted with an olefin in a loop slurry reactor to produce an olefin polymer. A representative ethylene-based polymer produced using the catalyst composition has excellent dart impact strength and low gels, and can be characterized by a HLMI from 4 to 10 g/10 min, a density from 0.944 to 0.955 g/cm3, a higher molecular weight component with a Mn from 280,000 to 440,000 g/mol, and a lower molecular weight component with a Mw from 30,000 to 45,000 g/mol and a ratio of Mz/Mw ranging from 2.3 to 3.4.
Abstract:
Ethylene-based polymers are characterized by a density from 0.92 to 0.955 g/cm3, a HLMI of less than 35 g/10 min, and a ratio of a number of short chain branches (SCBs) per 1000 total carbon atoms at Mz to a number of SCBs per 1000 total carbon atoms at Mn in a range from 11.5 to 22. These polymers can have a higher molecular weight (HMW) component and a lower molecular weight (LMW) component, in which a ratio of a number of SCBs per 1000 total carbon atoms at Mn of the HMW component to a number of SCBs per 1000 total carbon atoms at Mn of the LMW component is in a range from 10.5 to 22. These ethylene polymers can be produced using a dual catalyst system containing an unbridged metallocene compound with an indenyl group having at least one halogen-substituted hydrocarbyl substituent with at least two halogen atoms, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group.
Abstract:
Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 1 g/10 min, a density from 0.93 to 0.965 g/cm3, a CY-a parameter at 190° C. of less than 0.2, an average number of short chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 40,000 to 60,000 g/mol, and an average number of long chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 4,000,000 to 6,000,000 g/mol. The ethylene polymers can be used to fabricate pipes, blown films, and blow molded products, and the ethylene polymers can be produced with a dual catalyst system containing a single atom bridged or two carbon atom bridged metallocene compound with two indenyl groups or an indenyl group and a cyclopentadienyl group, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group with an alkenyl substituent.
Abstract:
Catalyst systems having both a metallocene catalyst component and a Ziegler-Natta component are disclosed. Such catalyst systems can contain a metallocene compound, an activator-support, an organoaluminum compound, and a Ziegler-Natta component comprising titanium supported on magnesium chloride.