摘要:
When a change in sub-channel selection is made after a mobile/handheld (M/H) Frame is begun, an M/H receiver is for some time unable to correct byte errors by transverse Reed-Solomon (TRS) decoding of turbo decoding results. Despite this, later stages of the M/H receiver are supplied data that cyclic-redundancy-check (CRC) decoding of Internet protocol (IP) packets does not find to be in error. Some of the IP packets comprise Service Map Table (SMT)-mobile/handheld (MH) data used to update SMT determining how the M/H receiver is operated. SMT-MH data that have not been subjected to TRS byte-error correction are kept from updating the SMT until those SMT-MH data are verified by later SMT-MH data subjected to TRS byte-error correction. Transmitting total number of Groups (TNOG) information for the currently received M/H Frame in all its sub-frames speeds up acquisition of Fast Information Channel updates by the M/H receiver.
摘要:
Digital television broadcasting signals employ parallel concatenated convolutional coding, commonly called “turbo coding”, to improve reception by receivers in motor vehicles. Turbo coded Reed-Solomon codewords are transversally disposed in the payload fields of encapsulating MPEG-2-compliant packets to improve the capability of the Reed-Solomon coding to overcome deep fades. Turbo codewords are transmitted more than once in so-called “staggercasting”. Reception of DTV signals is improved by combining soft decisions concerning repeated transmissions of turbo codewords before turbo decoding. Only the data components of turbo codewords are transmitted twice in “punctured” staggercasting of turbo codewords, with parity components being transmitted only once, so code rate is reduced by a smaller factor than two.
摘要:
A system for broadcasting the same data in concatenated convolutional coded (CCC) form from a network of 8-VSB amplitude-modulation transmitters operated with different radio-frequency carrier waves assigns the coded data to time-interleaved ones of time slots that are universal throughout the network. Therefore, a mobile/handheld (M/H) receiver with a single frequency-agile tuner can provide frequency-diversity reception of the time-interleaved data in CCC form. Alternatively, an M/H receiver with two tuners is used to provide frequency-diversity reception of the time-interleaved data in CCC form. The system for a network of 8-VSB AM transmitters that broadcast the same data in CCC form can further provide for each 8-VSB AM transmitter to make repeated transmissions of data in CCC form, to facilitate iterative-diversity reception of those transmissions by M/H receivers.
摘要:
Electromagnetic signals for transmitting television and other information more robustly have amplitudes modulated in accordance with a digital signal generated by convolutional interleaving and trellis coding of segments of successive data fields, each of which segments contains a prescribed number of bytes. In improvements of these signals, respective fractional portions of a Reed-Solomon forward-error-correction codeword are transmitted in respective ones of a plurality of the segments of the successive data fields. The respective ones of the plurality of segments are separated from each other within the successive data fields, such that their individual bytes do not interleave with each other after the convolutional interleaving and trellis coding are completed.
摘要:
A DTV signal is transmitted that avoids legacy DTV receivers regarding data segments used in other than ordinary 8VSB transmissions being mistaken for (207, 187) R-S FEC codewords that appear to free of byte error or can be corrected to appear so. The DTV signal is analyzed prior to its transmission, for detecting those data segments used in other than ordinary 8VSB transmissions that legacy DTV receivers could mistake for correct (207, 187) R-S FEC codewords or correctable (207, 187) R-S FEC codewords. Twenty bytes of each segment of data that could be so mistaken are modified to prevent such mistake. Complementing certain bits in the final twenty bytes of each segment of data is preferred if data are transmitted at one-half or one-quarter ordinary 8VSB code rate. Segments of control data, each pertaining to a respective future group of said segments of data, are transmitted in a further aspect of the invention for indicating which data segments are modified. These segments of control data can further include information concerning the type of modulation used in each data segment.
摘要:
A system for broadcasting the same data in concatenated convolutional coded (CCC) form from a network of 8-VSB amplitude-modulation transmitters operated with different radio-frequency carrier waves assigns the coded data to time-interleaved ones of time slots that are universal throughout the network. Therefore, a mobile/handheld (M/H) receiver with a single frequency-agile tuner can provide frequency-diversity reception of the time-interleaved data in CCC form. Alternatively, an M/H receiver with two tuners is used to provide frequency-diversity reception of the time-interleaved data in CCC form. The system for a network of 8-VSB AM transmitters that broadcast the same data in CCC form can further provide for each 8-VSB AM transmitter to make repeated transmissions of data in CCC form, to facilitate iterative-diversity reception of those transmissions by M/H receivers.
摘要:
Receivers for diversity reception of data transmitted by concatenated convolutional code (CCC) from at least one 8-VSB transmitter are described. Each receiver includes a first turbo decoder for the CCC as finally transmitted, a second turbo decoder for the CCC as initially transmitted, and an information-exchange unit connected for exchanging decoding information between the turbo decoders, which perform decoding concurrently. The turbo decoders are designed for decoding CCC formed from an outer convolutional code encoding de-interleaved Gray-coded data and a subsequent binary-coded inner convolutional code forming a 12-phase trellis code in accordance with a Gray-labeling procedure, the outer convolutional code encoding being symbol-interleaved before encoding within said inner convolutional code so said inner convolutional code has implied symbol interleaving in which the original order of data bits is preserved.
摘要:
A data field of transmitted digital television signals includes a first set of A/53-compliant data segments that convey payload information and further includes a second set of A/53-compliant data segments that contain parity bytes for transverse Reed-Solomon forward-error-correction coding of the data contained within the first set of A/53-compliant data segments. A digital television receiver uses the parity bytes in the second set of A/53-compliant data segments to implement transverse Reed-Solomon forward-error-correction decoding that corrects byte errors in the data contained in the first set of A/53-compliant data segments.
摘要:
M/H Groups each begin with a respective trellis-initialization of 2/3 trellis coding used as inner convolutional coding of concatenated convolutional coding (CCC). Concluding each M/H Group with another trellis-initialization of 2/3 trellis coding terminates the inner convolutional coding of the CCC properly, facilitating bi-directional decoding thereof. Properly terminating the inner convolutional coding of the CCC also facilitates wrap-around turbo decoding of that M/H Group beginning after the earlier training sequence with known 8VSB symbols and concluding with the trellis-initialization of 2/3 trellis coding before that earlier training sequence. At least one further trellis-initialization of 2/3 trellis coding can be inserted into an M/H Group for splitting it into first and second portions that can be decoded separately and that can be efficiently packed by portions of RS Frames employing transverse Reed-Solomon codes of a standard length.
摘要:
Procedures performed prior to convolutional interleaving of 8VSB digital television signals restrict the alphabet of symbols in novel methods of generating trellis-coded digital television signals that include more robust symbol coding using a restricted alphabet of symbols selected from a full 8VSB symbol alphabet consisting of −7, −5, −3, −1, +1, +3, +5 and +7 normalized modulation levels superposed on a background modulation level. Certain of these novel procedures generate pseudo-2VSB or P-2VSB robust symbol coding with a restricted alphabet of symbols consisting of −7, −5, +5 and +7 normalized modulation levels superposed on a background modulation level. Others of these novel procedures generate prescribed-coset-pattern-modulation or PCPM robust symbol coding intermixing two restricted alphabets of symbols according to a prescribed pattern. One of the two restricted alphabets of symbols used in PCPM consists of −3, −1, +5 and +7 normalized modulation levels superposed on a background modulation level. The other of the two restricted alphabets of symbols used in PCPM consists of −7, −5, +1 and +3 normalized modulation levels superposed on a background modulation level.