Method of making amorphous semiconductor alloys and devices using
microwave energy
    71.
    发明授权
    Method of making amorphous semiconductor alloys and devices using microwave energy 失效
    制造使用微波能量的非晶半导体合金和器件的方法

    公开(公告)号:US4504518A

    公开(公告)日:1985-03-12

    申请号:US605575

    申请日:1984-04-30

    摘要: A low pressure process for making amorphous semiconductor alloy films and devices at high deposition rates and high gas conversion efficiencies utilizes microwave energy to form a deposition plasma. The alloys exhibit high-quality electronic properties suitable for many applications including photovoltaic and electrophotographic applications.The process includes the steps of providing a source of microwave energy, coupling the microwave energy into a substantially enclosed reaction vessel containing the substrate onto which the amorphous semiconductor film is to be deposited, introducing into the vessel at least one reaction gas and evacuating the vessel to a low enough deposition pressure to deposit the film at high deposition rates with high reaction gas conversion efficiencies without any significant powder or polymeric inclusions. The microwave energy and the reaction gases form a glow discharge plasma within the vessel to deposit an amorphous semiconductor film from the reaction gases onto the substrate. The reaction gases can include silane (SiH.sub.4), silicon tetrafluoride (SiF.sub.4), silane and silicon tetrafluoride, silane and germane (GeH.sub.4), and silicon tetrafluoride and germane. The reaction gases can also include germane or germanium tetrafluoride (GeF.sub.4). To all of the foregoing, hydrogen (H.sub.2) can also be added. Dopants, either p-type or n-type can also be added to the reaction gases to form p-type or n-type alloy films, respectively. Also, band gap increasing elements such as carbon or nitrogen can be added in the form of, for example, methane or ammonia gas to widen the band gap of the alloys.

    摘要翻译: 用于制造非晶半导体合金膜和具有高沉积速率和高气体转换效率的器件的低压工艺利用微波能量来形成沉积等离子体。 该合金表现出高质量的电子性能,适用于许多应用,包括光伏和电子照相应用。 该方法包括以下步骤:提供微波能量源,将微波能量耦合到基本上封闭的反应容器中,所述反应容器含有要沉积非晶半导体膜的基底,将至少一个反应气体引入容器中并抽真空 达到足够低的沉积压力,以高反应气体转化效率以高沉积速率沉积膜,而没有任何显着的粉末或聚合物夹杂物。 微波能量和反应气体在容器内形成辉光放电等离子体,以将非晶半导体膜从反应气体沉积到衬底上。 反应气体可以包括硅烷(SiH4),四氟化硅(SiF4),硅烷和四氟化硅,硅烷和锗烷(GeH4)以及四氟化硅和锗烷。 反应气体还可以包括锗烷或四氟化锗(GeF 4)。 对于所有这些,也可以加入氢(H 2)。 也可以将p型或n型掺杂剂添加到反应气体中以分别形成p型或n型合金膜。 此外,带隙增加元素如碳或氮可以以例如甲烷或氨气的形式加入,以加宽合金的带隙。