摘要:
Methods for fabricating a device structure in a semiconductor-on-insulator substrate. The method includes forming a first isolation region in the substrate device layer that extends from a top surface of the device layer to a first depth and forming a second isolation region in the semiconductor layer that extends from the top surface of the semiconductor layer to a second depth greater than the first depth. The method further includes forming a doped region of the device structure in the semiconductor layer that is located vertically between the first isolation region and the insulating layer.
摘要:
Disclosed herein are embodiments of a method of forming a complementary metal oxide semiconductor (CMOS) device that has at least one high aspect ratio gate structure with a void-free and seam-free metal gate conductor layer positioned on top of a relatively thin high-k gate dielectric layer. These method embodiments incorporate a gate replacement strategy that uses an electroplating process to fill, from the bottom upward, a high-aspect ratio gate stack opening with a metal gate conductor layer. The source of electrons for the electroplating process is a current passed directly through the back side of the substrate. This eliminates the need for a seed layer and ensures that the metal gate conductor layer will be formed without voids or seams. Furthermore, depending upon the embodiment, the electroplating process is performed under illumination to enhance electron flow to a given area (i.e., to enhance plating) or in darkness to prevent electron flow to a given area (i.e., to prevent plating).
摘要:
In an aspect, a method is provided for forming a silicon-on-insulator (SOI) layer. The method includes the steps of (1) providing a silicon substrate; (2) selectively implanting the silicon substrate with oxygen using a low implant energy to form an ultra-thin patterned seed layer; and (3) employing the ultra-thin patterned seed layer to form a patterned SOI layer on the silicon substrate. Numerous other aspects are provided.
摘要:
A semiconductor structure including at least one e-fuse embedded within a trench that is located in a semiconductor substrate (bulk or semiconductor-on-insulator) is provided. In accordance with the present invention, the e-fuse is in electrical contact with a dopant region that is located within the semiconductor substrate. The present invention also provides a method of fabricating such a semiconductor structure in which the embedded e-fuse is formed substantially at the same time with the trench isolation regions.
摘要:
In a first aspect, a first apparatus is provided. The first apparatus is an element of an integrated circuit (IC) having (1) a metal-oxide-semiconductor field-effect transistor (MOSFET) having source/drain diffusion regions; (2) an electrical fuse (eFuse) coupled to the MOSFET such that a portion of the eFuse serves as a gate region of the MOSFET; and (3) an implanted region coupled to the source/drain diffusion regions of the MOSFET such that a path between the source/drain diffusion regions functions as a short circuit or an open circuit. Numerous other aspects are provided.
摘要:
An integrated circuit, including: a pulse generator adapted to generate a pulsed signal; a cycle counter adapted to count cycles of the pulsed signal; one or more repairable circuit elements; and a repair processor adapted to repair a repairable circuit element when the cycle counter reaches a pre-determined cycle count.
摘要:
An inverse-T transistor is formed by a method that decouples the halo implant, the deep S/D implant and the extension implant, so that the threshold voltage can be set by adjusting the halo implant without being affected by changes to the extension implant that are intended to alter the series resistance of the device. Formation of the inverse-T structure can be made by a damascene method in which a temporary layer deposited over the layer that will form the cross bar of the T has an aperture formed in it to hold the gate electrode, the aperture being lined with vertical sidewalls that provide space for the ledges that form the T. Another method of gate electrode formation starts with a layer of poly, forms a block for the gate electrode, covers the horizontal surfaces outside the gate with an etch-resistant material and etches horizontally to remove material above the cross bars on the T, the cross bars being protected by the etch resistant material.
摘要:
A thermal monitor diode is provided that comprises a silicon thin film on an insulator mounted on a silicon substrate. An opening extends through the silicon thin film and through the insulator and partially into the silicon substrate and terminates at an end wall. A conductive material is disposed in the opening and extends to the end wall. The substrate has a P/N junction formed therein adjacent the end wall, and an insulating spacer material surrounds the conductive material and is sufficiently thin to allow temperature excursions in the silicon thin film to pass therethrough. The invention also contemplates a method of forming the diode.
摘要:
A structure and method for providing an antifuse which is closed by laser energy with an electrostatic assist. Two or more metal segments are formed over a semiconductor structure with an air gap or a porous dielectric between the metal segments. Pulsed laser energy is applied to one or more of the metal segments while a voltage potential is applied between the metal segments to create an electrostatic field. The pulsed laser energy softens the metal segment, and the electrostatic field causes the metal segments to move into contact with each other. The electrostatic field reduces the amount of laser energy which must be applied to the semiconductor structure to close the antifuse.
摘要:
A structure and method are provided for forming a thermistor. Isolation structures are formed in a substrate including at least an upper layer of a single crystal semiconductor. A layer of salicide precursor is deposited over the isolation region and the upper layer. The salicide precursor is then reacted with the upper layer to form a salicide self-aligned to the upper layer. Finally, the unreacted portions of the salicide precursor are then removed while preserving a portion of the salicide precursor over the isolation region as a body of the thermistor. An alternative integrated circuit thermistor is formed from a region of thermistor material in an embossed region of an interlevel dielectric (ILD).