Abstract:
Systems and methods for a small low cost resonator fiber optic gyroscope (RFOG) with reduced optical errors are provided. In one embodiment, a RFOG comprises: a light source; an optical chip configured to couple a clockwise optical signal and a counterclockwise optical signal from the light source into a fiber optic resonator and couple the clockwise optical signal and the counterclockwise optical signal from the fiber optic resonator to at least one photodetector. The fiber optic resonator comprises a fiber optic coil having a first end point and a second end point. The fiber optic coil has a 90-degree splice located substantially half-way between the first end point and the second end point, is wrapped around a first fiber stretcher located between the first end point and the 90-degree splice, and is wrapped around a second fiber stretcher that is located between the second end point and the 90-degree splice.
Abstract:
In one embodiment, a method is provided. The method comprises transmitting a first laser pump signal to an optical resonator; adjusting a frequency of the first laser pump signal; generating a first order Stokes signal from the first laser pump signal in an optical resonator; measuring a first beat signal frequency; ceasing transmission of the first laser pump signal to the optical resonator; transmitting a second laser pump signal to the optical resonator; adjusting a frequency of the second laser pump signal; generating a first order Stokes signal from the second laser pump signal in the optical resonator; and measuring a second beat signal frequency; ceasing transmission of the second laser pump signal to the optical resonator.
Abstract:
In one embodiment, a method of operating a glare reduction and ranging optical system having an image sensor with pixels is provided. The method comprises: generating a first light beam with a power spectral density; generating a reference light beam from the first light beam; emitting the first light beam with a power spectral density; collecting scattered light and reflected light respectively reflected from a scattering medium and a target; determining a power spectral density of the first light beam so that the first light beam is substantially coherent with the scattered light; adjusting the power spectral density of the first light beam so that the reference light beam is substantially coherent with the scattered light; on a pixel by pixel basis, modifying the amplitude and phase of the reference light beam to minimize the DC light power at each pixel; storing the modified amplitude and phase that results in a substantially minimum detected DC light power for each pixel; increasing power spectral density of a second reference light beam; modulating the amplitude of the second reference light beam with a sinusoidal signal having a frequency; on a pixel by pixel basis, detecting the substantially maximum signal level at the modulation frequency on a pixel by adjusting a second delay of the reference light beam; and determining range to a target.
Abstract:
In one embodiment, a method is provided. The method comprises generating a waveform; measuring signals representative of angular rotation rate in a linear region of the waveform; and diminishing bias error about at least one of a waveform's maxima and minima.
Abstract:
A fiber light source comprises a laser pump configured to generate a pump laser beam at a predetermined wavelength; a first segment of rare earth doped fiber; a second segment of rare earth doped fiber; and an optical coupler coupled to a first end of the first segment and a first end of the second segment. The optical coupler is configured to split the pump laser beam based on a power coupling ratio. The first segment generates a first stimulated emission having a first mean wavelength sensitivity to pump laser power fluctuations and the second segment generates a second stimulated emission having a second mean wavelength sensitivity to pump laser power fluctuations such that a combined stimulated emission is approximately insensitive to pump laser power fluctuations.
Abstract:
A resonator fiber optic gyroscope comprises a master laser that emits a reference optical signal, a first slave laser that emits a clockwise optical signal, and a second slave laser that emits a counter-clockwise optical signal. A resonator ring cavity in optical communication with the first slave laser and second slave laser is configured to receive the optical signals from the slave lasers without receiving the reference optical signal. A reflected optical signal from the cavity is directed to a feedback laser stabilization loop for the master laser that includes a common modulation frequency scheme. A frequency of the optical signal from the master laser is indirectly locked onto a resonance frequency of the cavity with a fixed frequency offset, which is determined by a relative frequency between the optical signal of the first slave laser or the second slave laser, and the optical signal of the master laser.
Abstract:
Systems and methods for fiber optic gyroscopes are provided. In one embodiment, a resonating fiber optic gyroscope comprises: first and second laser sources producing first and second optical beams; a first resonator having a hub comprising a hub material, wherein the first and second optical beams circulate within the first resonator in opposite directions; a second resonator having a hub comprising the hub material, wherein the first and second optical beams circulate within the second resonator in opposite directions; first and second servo loops; the first loop controls the first laser source based on a beam that has circulated through the first resonator and a beam that has circulated through the second resonator; the second servo loop controls the second laser source based on a beam that has circulated through the first resonator and a beam that has circulated through the second resonator; and a rotation rate detection circuit.
Abstract:
A resonator fiber optic gyroscope comprises a master laser that emits a reference optical signal, a first slave laser that emits a first optical signal and is responsive to the reference optical signal through a first optical phase lock loop (OPLL), and a second slave laser that emits a second optical signal and is responsive to the reference optical signal through a second OPLL. A reference resonator in optical communication with the master laser receives the reference optical signal, and comprises a first fiber optic coil having a first cavity length. A gyro resonator, in optical communication with the first and second slave lasers, receives the first and second optical signals. The gyro resonator comprises a second fiber optic coil having a second cavity length longer than the first cavity length. The reference resonator has an operating frequency that substantially tracks with an operating frequency of the gyro resonator.
Abstract:
A light-source system to output at least one stable phase modulated coherent light beam is provided. The light-source system includes a multi-frequency laser system, at least one phase modulator, at least one feedback photodetector, and at least one modulation servo. The multi-frequency laser system emits a reference light beam and provides at least one unmodulated-light beam having a respective at least one carrier frequency offset from the reference carrier frequency. The phase modulator modulates the unmodulated-light beam provided by the multi-frequency laser system. The frequency-selection device monitors a frequency component of interest. The feedback photodetector provides information indicative of beat frequencies between the reference light beam and the modulated-light beam. The modulation servo adjusts a modulation amplitude applied to the phase modulator to substantially suppress one of: the respective electric field at a carrier frequency; or the electric field components at the frequencies associated with a selected sideband-pair.
Abstract:
A multi-core transport system for a resonant fiber optic gyroscope is provided. The transport system has a transport fiber configured to transmit a clockwise signal and a counterclockwise signal, wherein the transport fiber has at least a first core and a second core. The first core and second core are configured such that when the first core imparts a first effect on the clockwise signal, the second core imparts a second effect on the counterclockwise signal, wherein the second effect substantially mirrors the first effect. The system further comprises a first coupler configured to optically couple the clockwise signal to the first core, and the counterclockwise signal to the second core; and a second coupler configured to optically couple the clockwise signal from the first core to a resonator, and the counterclockwise signal from the second core to the resonator.