Abstract:
A data transmission method, includes: detecting, by a first user terminal, PDCCH of second user terminals beyond a cell of the first user terminal, and acquiring modulation and coding scheme information from the PDCCH; estimating interference between the first user terminal and the second user terminals according to the modulation and coding scheme information; selecting a second user terminal having a minimum interference on the first user terminal according to the interference; and multiplexing, by the first user terminal, an uplink time-frequency resource of the second user terminal having the minimum interference to perform D2D data transmission.
Abstract:
Embodiments of the present invention provide a method and a device for processing interference, wherein according to a first demodulation reference signal DMRS pilot symbol carried by a first subcarrier used by an uplink user equipment, an interference channel matrix of an uplink interference channel from the uplink user equipment to a D2D receiving end is measured, wherein the first subcarrier is a subcarrier shared by a D2D transmitting end and the uplink user equipment; a null space matrix of the uplink interference channel is calculated according to the interference channel matrix; and the signal received by the D2D receiving end via the first subcarrier is processed by using the null space matrix to eliminate an interference signal which comes from the uplink user equipment in the signal.
Abstract:
Embodiments of the present invention provide a wireless communication method, base station and system. The base station includes several LED lights and/or several VLC/IR receivers. The several LED lights are configured to send downlink signals in an OFDMA standard to a user terminal, and the several VLC/IR receivers are configured to receive uplink signals that are of an SC-FDMA standard and sent by the user terminal. The base station further includes a baseband signal processing unit configured to equate the several LED lights and/or the several VLC/IR receivers with radio remote units of an LTE mode to perform processing and resource management. The embodiments of the present invention are capable of reusing baseband signal processing and resource management manners in an existing LTE system, thereby simplifying resource management and baseband signal processing operations performed by the base station, and saving the base station resources.
Abstract:
The present invention provides a new system structure of mobile cellular system based on layered cloud computing. A core network part of the system structure includes a CRG node, and an access network part includes an MC node and a DU node. The system structure proposed in the present invention is compatible with all conventional mobile air interface protocols, supports the layered cloud computing function, and is capable of providing joint signal processing and joint scheduling, flexibly allocating computing resources among nodes, and compressing the structure of the core network, so that larger network data throughput can be provided for users with lower deployment cost.
Abstract:
Embodiments of the present invention provide a method, an apparatus, and a system for interference alignment. The method includes: receiving signals transmitted by transmit ends, where the signals include interference signals and a wanted signal; aligning original constellation diagrams of the interference signals to acquire a first interference aligned constellation diagram; performing, according to the first interference aligned constellation diagram, interference signal demodulation and decoding on the received signals to acquire an interference source bit sequence; performing, according to the interference source bit sequence and the first interference aligned constellation diagram, interference reconstruction and removal to acquire a second interference aligned constellation diagram; and performing, according to the second interference aligned constellation diagram, wanted signal demodulation and decoding on the signal sequence to acquire the wanted signal transmitted by a wanted signal transmit end. The embodiments of the present invention are applicable to radio communications.
Abstract:
A WLAN coordinated data transmission method, system, and relevant device are disclosed. The WLAN coordinated data transmission method includes: detecting, by an offloading scheduling controller, whether the number of MAC SDUs buffered in a MAC SDU queue of a mobile communication module exceeds a preset threshold, and, if so, packing a part of the MAC SDUs into a MAC PDU, and sending the MAC PDU to a coordination mode management module through an interface of the mobile communication module; sending, by the coordination mode management module, the MAC PDU containing the packed part of the MAC SDUs through an LLC protocol layer to a WLAN module for transmission; and packing, by the offloading scheduling controller, a remaining part of the MAC SDUs buffered in the MAC SDU queue into a MAC PDU, and transmitting the MAC PDU through the mobile communication module.
Abstract:
The present invention provides a new system structure of mobile cellular system based on layered cloud computing. A core network part of the system structure includes a CRG node, and an access network part includes an MC node and a DU node. The system structure proposed in the present invention is compatible with all conventional mobile air interface protocols, supports the layered cloud computing function, and is capable of providing joint signal processing and joint scheduling, flexibly allocating computing resources among nodes, and compressing the structure of the core network, so that larger network data throughput can be provided for users with lower deployment cost.
Abstract:
Embodiments of the present disclosure disclose a method and an apparatus for determining a precoding matrix, which relate to the field of communications technologies and may improve throughput of a MIMO system and optimize overall system performance, including: determining a rank constraint of a jth transmitting end, where j=1, 2, . . . , K, and K is the total number of transmitting ends in a MIMO system; iteratively calculating an optimal precoding matrix of the jth transmitting end according to a channel matrix from the jth transmitting end to a jth receiving end, an autocorrelation matrix of interference and noise of the jth receiving end, and the rank constraint of the jth transmitting end, where the optimal precoding matrix maximizes channel capacity of a link from the jth transmitting end to the jth receiving end under a circumstance that precoding matrices of other transmitting ends do not change.
Abstract:
The present disclosure relates to a method and a device for creating an MO instance in the management tree of a terminal device. In the method, a processor in the device adds the node value to an unnamed node or a specified node of the unnamed node in the MO of the management tree in the terminal device. The processor sets the node value of the specified node under the unnamed node as the name of the unnamed node. The specified node is a sub-node of the unnamed node or a node from other MOs.
Abstract:
Embodiments of the present invention provide a data transmission processing method, apparatus, and system. The method includes: receiving, by a first base station, an adjustment parameter transmitted by a terminal, where the adjustment parameter is obtained by the terminal according to reference signals separately transmitted by the first base station and a second base station; performing, by the first base station and according to the adjustment parameter, channel compensation on a first channel between the first base station and the terminal to obtain a second channel; and transmitting, by the first base station, a first signal over the second channel to the terminal, so that the terminal obtains the first signal from a mixed signal of the first signal and a second signal that is transmitted by the second base station.