摘要:
The present disclosure is drawn to an oil-based ink jet ink including a non-aqueous, oil-based liquid vehicle containing a charge control agent, the liquid vehicle having a conductivity of less than less than 50 pS/cm; from 3 wt % to 12 wt % of a pigment; from 0.5 wt % to 6 wt % of a dispersant; and from 0.001 wt % to 0.5 wt % of a high molecular weight polymer that is partially or fully solubilized in the liquid vehicle, and having a weight average molecular weight from 50,000 to 5,000,000 Mw, wherein ink jet ink has a conductivity of less than 1,000 pS/cm.
摘要:
A screen includes a first set of louver members at least partially disposed in the screen and located proximate to a first side of the screen, and a second set of louver members at least partially disposed in the screen and located proximate to a second side of the screen. An observer on either side of the screen sees an image produced by light directed to that observer by that set of louvers on the same side of the screen as the observer. Objects on the other side of the screen from the observer are visible to the observer between the louvers.
摘要:
An optical sensor system is disclosed including a source module, a first detection module, and a second detection module. The source module includes a source housing unit having a source window member. The source module may emit a detection signal through the source window member. The first detection module and the second detection module are spaced apart from the source module.
摘要:
An optical sensor system is disclosed including a source module, a detection module, and a heating module. The source module includes a source housing unit having a source window member to emit a detection signal through the source window member. The detection module includes a first detection housing unit having a first detection window member spaced apart from the source module. The detection signal received by the detection module corresponds to an amount of volatile organic compounds (VOC) present in a path of the detection signal between the detection module and the source module. The heating module heats the source window member and the detection window member to remove deposit formation of the VOC there from.
摘要:
In a particular embodiment, a see-through display includes a screen having transparent layer of material with a front side and a back side. At least one plurality of shaped louver members is disposed between the front side and the back side. The plurality of the louver members allow transmission of a fraction of light through the screen with minimum scattering within a range of incident angles. The plurality of the louvers also redirect image signal light from an image source into a range of angles centered about a normal to the screen. The louver members combine the image signal light with the light emitted from background objects located on the backside of the screen. The background image light is transmitted through the display screen with minimal scattering. For embodiments providing two sets of louver members, the image signal light may be redirected to observers on either side of the screen, such that the observers may see each other as well as the intended image.
摘要:
A method for determining optical density is disclosed. A first measurement is taken on a white area of a substrate (402). A second measurement is taken on an area of the substrate printed with ink (404). A relative optical density of the ink is determined using the first and second measurements (406).
摘要:
An imaging method includes coating a transfer member with an adhesion promoter in a liquid state, changing the adhesion promoter on the transfer member from the liquid state to at least one of a solid state and a gel state, depositing a liquid marking agent on the solidified adhesion promoter corresponding to an image, changing a state of the adhesion promoter from the solid state to the flowable state, and transferring the liquid marking agent and the adhesion promoter in the flowable state from the transfer member to a substrate to form a hard version of the image thereon.
摘要:
An electron source includes a planar emission region for generating an electron emission, and a focusing structure for focusing the electron emission into an electron beam.
摘要:
The field emission planar electron emitter device is disclosed that has an emitter electrode, an extractor electrode, and a planar emitter emission layer, electrically coupled to the emitter electrode and the extractor electrode. The planar electron emitter is configured to bias electron emission in a central region of the emission layer in preference to an outer region thereof. One structural example that provides this biasing is achieved by fabricating the planar emitter emission layer so that it has an outer perimeter that is thicker in depth than at an interior portion of the planar emitter emission layer, which reduces electron beam emission at the outer perimeter when an electric field is applied between the emitter electrode and the extractor electrode. The electric field draws emission electrons from the surface of the planar emitter emission layer towards the extractor electrode at a higher rate at the interior portion than at the outer perimeter. The planar electron emitter device further includes a focusing electrode electrically coupled to the planar electron emitter.
摘要:
The field emission planar electron emitter device is disclosed that has an emitter electrode, an extractor electrode, and a planar emitter emission layer, electrically coupled to the emitter electrode and the extractor electrode. The planar electron emitter is configured to bias electron emission in a central region of the emission layer in preference to an outer region thereof. One structural example that provides this biasing is achieved by fabricating the planar emitter emission layer so that it has an outer perimeter that is thicker in depth than at an interior portion of the planar emitter emission layer, which reduces electron beam emission at the outer perimeter when an electric field is applied between the emitter electrode and the extractor electrode. The electric field draws emission electrons from the surface of the planar emitter emission layer towards the extractor electrode at a higher rate at the interior portion than at the outer perimeter. The planar electron emitter device further includes a focusing electrode electrically coupled to the planar electron emitter.