摘要:
A hole transporting region made of a hole transporting material, an electron transporting region made of an electron transporting material, and a mixed region (light emitting region) in which both the hole transporting material and the electron transporting material are mixed and which is doped with a triplet light emitting material for red color are provided in an organic compound film, whereby interfaces between respective layers which exist in a conventional lamination structure are eliminated, and respective functions of hole transportation, electron transportation, and light emission are exhibited. In accordance with the above-mentioned method, the organic light emitting element for red color can be obtained in which power consumption is low and a life thereof is long. Thus, the display device and the electric device are manufactured by using the organic light emitting element.
摘要:
A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more.
摘要:
The light-emitting unit has at least a first light-emitting element, a second light-emitting element, and a separation layer. The separation layer has a leg portion and a stage portion which protrudes outside of a bottom surface of the leg portion over the leg portion. An upper electrode of the first light-emitting element is electrically connected to a lower electrode of the second light-emitting element in a region where the upper electrode and the lower electrode overlap with the stage portion of the separation layer. By providing the separation layer, the light-emitting unit can be formed without using a metal mask. The upper electrode can be a composite material including an organic compound and a metal oxide or a stacked layer of the composite material and a metal material or a light-transmitting conductive material.
摘要:
The present invention is a fabrication method of a light-emitting device characterized by ejecting a solution containing a luminescent material toward an anode or a cathode under a reduced pressure and characterized in that in a duration before the solution is arrived at the anode or the cathode, the solvent in the solution is volatilized, the remaining part of the luminescent material is deposited on the anode or the cathode, and thereby formed a light-emitting layer. By the present invention, a baking process for thickness reduction is not required after applying the solution. Accordingly, it is possible to provide a fabrication method with high throughput although the method is low in cost and simple.
摘要:
The present invention relates to a method for manufacturing a light-emitting device. At least one of a light-emitting film forming step, a conductive film forming step and an insulating film forming step is carried out while holding a substrate in a manner that an angle subtended by a surface of the substrate and the direction of gravity is within a range of from 0 to 30°.
摘要:
It is an object of the invention to provide a light emitting device which can display a superior image in which luminescent color from each light emitting layer is beautifully displayed and power consumption is lowered in a light emitting element in which light emitting layers are stacked. One feature of the invention is that, in a light emitting element which comprises light emitting layers stacked between electrodes, each distance between each light emitting layer and an electrode is approximately oddly multiplied ¼ wavelength by controlling a thickness of a layer provided therebetween to enhance luminous output efficiency. Another feature of the invention is that a drive voltage is lowered using a high conductive material for the layer compared with a conventional element.
摘要:
The present invention relates to a method for manufacturing a light-emitting device. At least one of a light-emitting film forming step, a conductive film forming step and an insulating film forming step is carried out while holding a substrate in a manner that an angle subtended by a surface of the substrate and the direction of gravity is within a range of from 0 to 30°.
摘要:
To provide a light emitting device in which generation of cross talk between adjacent light emitting elements is suppressed, even when the light emitting device uses a light emitting element having high current efficiency. Also, to provide a light emitting device having high display quality even when the light emitting device uses a light emitting element having high current efficiency. The light emitting device has a pixel portion including a plurality of light emitting elements, wherein each of the plurality of light emitting elements includes a plurality of light emitting bodies provided between a first electrode and a second electrode and a conductive layer formed between the plurality of light emitting bodies, wherein the conductive layer is provided for each light emitting element, and wherein an edge portion of the conductive layer is covered with the plurality of light emitting bodies.
摘要:
A light emitting device is provided which has a structure for lowering energy barriers at interfaces between layers of a laminate organic compound layer. A mixed layer (105) composed of a material that constitutes an organic compound layer (1) (102) and a material that constitutes an organic compound layer (2) (103) is formed at the interface between the organic compound layer (1) (102) and the organic compound layer (2) (103). The energy barrier formed between the organic compound layer (1) (102) and the organic compound layer (2) (103) thus can be lowered.
摘要:
A hole transporting region made of a hole transporting material, an electron transporting region made of an electron transporting material, and a mixed region (light emitting region) in which both the hole transporting material and the electron transporting material are mixed and which is doped with a triplet light emitting material for red color are provided in an organic compound film, whereby interfaces between respective layers which exist in a conventional lamination structure are eliminated, and respective functions of hole transportation, electron transportation, and light emission are exhibited. In accordance with the above-mentioned method, the organic light emitting element for red color can be obtained in which power consumption is low and a life thereof is long. Thus, the display device and the electric device are manufactured by using the organic light emitting element.