Abstract:
Embodiments of a wireless device and methods for rekeying with reduced packet loss in a wireless network are generally described herein. In some embodiments, during rekeying operations a new key for reception may be installed early (i.e., prior to receipt of a rekeying confirmation message). The use of the new key for transmission may be delayed until after receipt of the rekeying confirmation message. The early installation of the new key for reception may allow both the new key and old key to be active at the same time for use decrypting received packets to reduce packet loss during rekeying operations. The rekeying confirmation message may be the fourth message of a four-way handshake for rekeying. In some embodiments, two key identifiers may be alternated between four-way handshakes to prevent deletion of the old key.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of simultaneously communicating with a group of wireless communication devices. For example, a device may include a wireless communication unit to communicate with at least one group of a plurality of wireless communication devices over a wireless communication medium, wherein the wireless communication unit is to reserve the wireless communication medium for a time period, during which the wireless communication unit is to simultaneously transmit two or more different wireless communication transmissions to two or more wireless communication devices of the group, respectively. Other embodiments are described and claimed.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of scheduling communications with a group of wireless communication devices. For example, a wireless communication unit may transmit at least one scheduling frame including an indication of a downlink period allocated for simultaneous transmission from the wireless communication unit to at least one group of a plurality of wireless communication devices, wherein the wireless communication unit is to simultaneously transmit a plurality of different wireless communication transmissions to the plurality of wireless communication devices of the group during the downlink period. Other embodiments are described and claimed.
Abstract:
Wireless device, method, and computer readable media for channel contention in wireless communication devices. The wireless communication device may include hardware processing circuitry configured to: determine to adapt the channel contention, and configured to adapt the channel contention settings by changing a level of a clear channel assessment (CCA) and adapting at least one additional channel contention setting. The hardware processing circuitry may be configured to adapt the channel contention settings by raising a level of the clear channel assessment (CCA) and by decreasing a power used to transmit, raising a back-off time, or modifying a portion of or parameter to a distributed coordination function (DCF). The hardware processing circuitry may be configured to adapt the channel contention settings by decreasing the clear channel assessment (CCA) and increasing a power used to transmit or decreasing an amount of time to wait after a CCA determines the channel is free.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of scheduling communications with a group of wireless communication devices. For example, a wireless communication unit may transmit at least one scheduling frame including an indication of a downlink period allocated for simultaneous transmission from the wireless communication unit to at least one group of a plurality of wireless communication devices, wherein the wireless communication unit is to simultaneously transmit a plurality of different wireless communication transmissions to the plurality of wireless communication devices of the group during the downlink period. Other embodiments are described and claimed.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of scheduling communications with a group of wireless communication devices. For example, a wireless communication unit may transmit at least one scheduling frame including an indication of a downlink period allocated for simultaneous transmission from the wireless communication unit to at least one group of a plurality of wireless communication devices, wherein the wireless communication unit is to simultaneously transmit a plurality of different wireless communication transmissions to the plurality of wireless communication devices of the group during the downlink period. Other embodiments are described and claimed.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of simultaneously communicating with a group of wireless communication devices. For example, a wireless communication unit may assign a plurality of wireless communication devices to at least one Space-Division Multiple Access (SDMA) group based on traffic-specification (TSPEC) information corresponding to the plurality of wireless communication devices, wherein the wireless communication unit is to simultaneously transmit a plurality of different wireless communication transmissions to the plurality of wireless communication devices of the group, respectively. Other embodiments are described and claimed.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of simultaneously communicating with a group of wireless communication devices. For example, a device may include a wireless communication unit to communicate with at least one group of a plurality of wireless communication devices over a wireless communication medium, wherein the wireless communication unit is to reserve the wireless communication medium for a time period, during which the wireless communication unit is to simultaneously transmit two or more different wireless communication transmissions to two or more wireless communication devices of the group, respectively. Other embodiments are described and claimed.
Abstract:
An extremely high-throughput (EHT) station (STA) is configured for transmission of a control response frame for rate selection. In response to a frame carried in an EHT PPDU soliciting a control response frame, the EHT STA may calculate a duration of a non-HT PPDU containing the control response frame sent at a primary rate, The EHT STA may also encode a high-efficient (HE) single-user (SU) PPDU (HE SU PPDU) for transmission to carry the solicited control response frame when a transmit time of the encoded HE SU PPDU is less than the calculated duration of the non-HT PPDU, or encode an EHT PPDU for transmission to carry the solicited control response frame when a transmit time of the encoded EHT PPDU is less than the calculated duration of the non-HT PPDU. A reduction in overhead may be achieved by using an HE SU PPDU or an EHT PPDU instead of a non-HT PPDU to carry a solicited control response frame.
Abstract:
For example, an apparatus may include a segment parser to parse scrambled data bits of a PPDU into a first plurality of data bits and a second plurality of data bits, the PPDU to be transmitted in an OFDM transmission over an aggregated bandwidth comprising a first channel in a first frequency band and a second channel in a second frequency band; a first baseband processing block to encode and modulate the first plurality of data bits according to a first OFDM MCS for transmission over the first channel in the first frequency band; and a second baseband block to encode and modulate the second plurality of data bits according to a second OFDM MCS for transmission over the second channel in the second frequency band.