Abstract:
A method, apparatus, system, and computer readable medium may be used to perform beamforming. The method may include a first communication device sending a first plurality of beamforming training frames to a second communication device using a first beamforming weight vector; the first communication device receiving from the second communication device a second beamforming weight vector; and the first communication device sending a second plurality of beamforming training frames to the second communication device using the second beamforming weight vector. The apparatus, method, system, and computer readable media may use spatial diversity with beam switching, spatial diversity with a single beam, weighted multipath beamforming training, single user spatial multiplexing, and beamforming training for beam division multiple access (BDMA).
Abstract:
WTRUs, access points (APs) and methods thereon are disclosed. A method on a WTRU may include receiving a message from an AP that comprises a beamformee capability element; sending a second message to the AP that comprises a beamformer capability element; and receiving, from the AP, a third message in response to the second message that indicates a group to which the WTRU is assigned. The group may be based on the beamformer capability element and the group may indicate UL transmission information to be used by the WTRU. A method on an AP may include determining a group for multiple WTRUs based on a received beamformer capability element. A method on a WTRU may include sending to an AP a message with a low overhead preamble for UL MU-MIMO. The low overhead preamble may include LTFs that enable the AP to distinguish the WTRU from other WTRUs.
Abstract:
A method for beacon information provisioning, transmissions and protocol enhancements includes defining multiple level beacons based on the attributes of beacon information fields/elements. A short beacon may be used in addition to a primary beacon in space-time block code (STBC) modes, non-STBC modes and in multiple bandwidth modes. The short beacons may also be used for Fast Initial Link Setup (FILS) and to extend system coverage range. Beacon transmissions may use adaptive modulation and coding set/scheme (MCS).
Abstract:
Methods and apparatuses are related to multi-user parallel channel access (MU-PCA). For example, a wireless transmit/receive unit (WTRU) is provided that is one of the plurality of WTRUs operable to simultaneously communicate via a plurality of channels managed by an access point (AP). The WTRU includes a receiver configured to receive, from the AP, over at least one channel of the plurality of channels, a group poll (G-Poll) message that includes a resource allocation that indicates at least one allocated channel of the plurality of channels for the WTRU; and a transmitter configured to transmit an uplink request message, to the AP in response to the G-Poll message, over the at least one allocated channel of the plurality of channels, the uplink request message corresponding to uplink data the WTRU has for transmission to the AP.
Abstract:
A method performed by a STA may comprise transmitting a first negotiation message to an AP and receiving a second negotiation message from the AP. The first negotiation message and the second negotiation message may negotiate a block acknowledgement agreement. The method may further comprise receiving a data unit, from the AP, the data unit having a duration field indicating a duration of a block-ACK frame. The duration of the block-ACK frame may be determined based on the negotiated block ACK agreement. A block-ACK frame may be transmitted within the duration indicated by the duration field.
Abstract:
Methods and apparatuses are described herein for adapting clear channel assessment (CCA) thresholds with or without Transmit Power Control (TPC) are disclosed. An IEEE 802.11 station (STA) may dynamically calculate a STA specific transmit power control (TPC) value and a STA specific clear channel assessment (CCA) value based on a target TPC parameter and a target CCA parameter. The target TPC parameter and the target CCA parameter may be received from an IEEE 802.11 cluster head configured to control TPC and CCA for a plurality of STAs associated with the BSS. The target TPC parameter and the target CCA parameter also may be related. The STA may then determine whether a carrier sense multiple access (CSMA) wireless medium of a wireless local area network (WLAN) basic service set (BSS) is occupied or idle based on the STA specific CCA value.
Abstract:
Methods and apparatus may perform dual-band or multi-band mesh operations. A dual-band mesh station (MSTA) capable of operating in an O-band and a D-band may seek to join a mesh network, and may receive O-band beacons from at least one MSTA in the mesh network, where the O-band beacons may include D-band mesh information. The joining MSTA may transmit D-band beacons in a time-period specified by the O-band beacon, and on a condition that a beacon response message is received, may further transmit D-band association information via O-band management frames to join mesh network on the D-band. The joining MSTA may perform contention-free scheduled access in the D-band while sharing D-band transmission information in the O-band to enable concurrent communication in the D-band by neighboring multi-band MSTAs.
Abstract:
Systems, methods, and instrumentalities are provided to implement transmission scheduling. A multiband device may send a request via a first frequency band. The request may include a multiband Request to Send (MRTS) transmission. The request may be associated with a second frequency band and/or a beamforming training schedule. The first frequency band may be associated with a quasi-omni transmission and the second frequency band may be associated with a directional transmission. The first frequency band may be a 5 GHz band and the second frequency band may be a 60 GHz band. The multiband device may receive a multiband Clear to Send (MCTS) transmission via the first frequency band confirming the request. The multiband device may be configured to send a beamforming signal in accordance with the request, for example, via the second frequency band. The beamforming signal may be sent in accordance with a beamforming training schedule.
Abstract:
A method for beacon information provisioning, transmissions and protocol enhancements includes defining multiple level beacons based on the attributes of beacon information fields/elements. A short beacon may be used in addition to a primary beacon in space-time block code (STBC) modes, non-STBC modes and in multiple bandwidth modes. The short beacons may also be used for Fast Initial Link Setup (FILS) and to extend system coverage range. Beacon transmissions may use adaptive modulation and coding set/scheme (MCS).
Abstract:
Methods and apparatuses are described herein for determining a transmit power based on clear channel assessment (CCA) thresholds. A station (STA) associated with a first Basic Service Set (BSS) may receive, from an access point (AP) associated with the first BSS, a clear channel assessment (CCA) value for a group of STAs associated with a second BSS. The CCA value may indicate a minimum CCA threshold for a packet received from the second BSS. The STA may then determine, based on the CCA value, a STA specific CCA parameter and a target CCA parameter. The target CCA parameter may be greater than or equal to the STA specific CCA parameter. Based on the STA specific CCA parameter and the target CCA parameter, the STA may determine a target transmit power control (TPC) parameter of the STA, wherein the sum of target TPC parameter and target CCA parameter is constant.