摘要:
A cell layout of a semiconductor device includes a diffusion level layout including a plurality of diffusion region layout shapes. The cell layout also includes a gate electrode level layout defined to include linear-shaped layout features placed to extend in only a first parallel direction. Adjacent linear-shaped layout features that share a common line of extent in the first parallel direction are separated from each other by an end-to-end spacing that is substantially equal across the gate electrode level layout and that is minimized to an extent allowed by a semiconductor device manufacturing capability. The gate electrode level layout includes linear-shaped layout features defined along at least four different lines of extent in the first parallel direction. The cell layout also includes a number of interconnect level layouts each defined to pattern conductive features within corresponding interconnect levels above the gate electrode level of the cell.
摘要:
In some aspects, a method is provided for detecting a void in a test structure that comprises (a) measuring a resistance of the test structure; (b) applying a stress to the test structure at increasing levels until at least one of: (i) the measured resistance of the test structure exceeds a predetermined resistance threshold; and (ii) the stress level reaches a predetermined stress maximum; (c) detecting a void if the measured resistance of the test structure exceeds the predetermined resistance threshold; and (d) determining that the test structure is void free if the stress level reaches the predetermined stress maximum without the measured resistance of the test structure exceeding the predetermined resistance threshold. Numerous other aspects are provided.
摘要:
A cell of a semiconductor device includes a substrate portion formed to include a plurality of diffusion regions, including at least one p-type diffusion region and at least one n-type diffusion region separated from each other by non-active regions. The cell includes a gate electrode level including a number of conductive features defined to extend in only a first parallel direction. Each of the conductive features within the gate electrode level is fabricated from a respective originating rectangular-shaped layout feature. A width size of the conductive features within a five wavelength photolithographic interaction radius within the gate electrode level is less than a wavelength of light of 193 nanometers. Some of the conductive features form respective PMOS and/or NMOS transistor devices. The cell includes an equal number of PMOS and NMOS transistor devices. The cell also includes a number of interconnect levels formed above the gate electrode level.
摘要:
A semiconductor device includes a substrate portion having a plurality of diffusion regions defined therein. The semiconductor device includes a gate electrode level region including a number of conductive features defined to extend in only a first parallel direction. Adjacent ones of the number of conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features that are separated from each other by an end-to-end spacing having a size that is substantially equal across the gate electrode level region and is minimized to an extent allowed by a semiconductor device manufacturing capability. Some of the conductive features within the gate electrode level region extend over the plurality of diffusion regions to form PMOS or NMOS transistor devices. A total number of the PMOS and NMOS transistor devices in the gate electrode level region is greater than or equal to eight.
摘要:
A semiconductor device includes a substrate portion having a plurality of diffusion regions defined therein. A gate electrode level region is formed above the substrate portion to include conductive features defined to extend in only a first parallel direction. Adjacent ones of the conductive features that share a common line of extent are fabricated from respective originating layout features separated from each other by an end-to-end spacing of substantially equal and minimum size across the gate electrode level region. A width of the conductive features within a 5 wavelength photolithographic interaction radius is less than a 193 nanometer wavelength of light used in a photolithography process for their fabrication. Some conductive features extend over the plurality of diffusion regions to form PMOS or NMOS transistor devices. A number of the PMOS transistor devices is equal to a number of the NMOS transistor devices in the gate electrode level region.
摘要:
Problematic open areas are identified in a semiconductor wafer layout. The problematic open areas have a size variation relative to one or more neighboring open areas of the layout sufficient to cause adverse microloading variation. In one embodiment, the adverse microloading variation is controlled by shifting a number of layout features to interdict the problematic open areas. In another embodiment, the adverse microloading variation is controlled by defining and placing a number of dummy layout features to shield actual layout features that neighbor the problematic open areas. In another embodiment, the adverse microloading variation is controlled by utilizing sacrificial layout features which are actually fabricated on the wafer temporarily to eliminate microloading variation, and which are subsequently removed from the wafer to leave behind the desired permanent structures.
摘要:
A cell layout of a semiconductor device includes a diffusion level layout including a plurality of diffusion region layout shapes. The cell layout also includes a gate electrode level layout defined to include linear-shaped layout features placed to extend in only a first parallel direction. Adjacent linear-shaped layout features that share a common line of extent in the first parallel direction are separated from each other by an end-to-end spacing that is substantially equal across the gate electrode level layout and that is minimized to an extent allowed by a semiconductor device manufacturing capability. The gate electrode level layout includes linear-shaped layout features defined along at least four different lines of extent in the first parallel direction. The cell layout also includes a number of interconnect level layouts each defined to pattern conductive features within corresponding interconnect levels above the gate electrode level of the cell.
摘要:
A cell of a semiconductor device is disclosed to include a diffusion level including a plurality of diffusion regions separated by inactive regions. The cell also includes a gate electrode level including a number of conductive features defined to extend in only a first parallel direction. Each of the conductive features within the gate electrode level is fabricated from a respective originating rectangular-shaped layout feature. The gate electrode level includes conductive features defined along at least four different virtual lines of extent in the first parallel direction. The cell also includes a number of interconnect levels formed above the gate electrode level.
摘要:
A restricted layout region includes a diffusion level layout including diffusion region layout shapes that define at least one p-type diffusion region and at least one n-type diffusion region separated by a central inactive region. A gate electrode level layout is defined above the substrate portion to include linear-shaped layout features placed to extend in only a first parallel direction. Adjacent linear-shaped layout features that share a common line of extent in the first parallel direction are separated from each other by an end-to-end spacing that is substantially equal across the gate electrode level layout and that is minimized to an extent allowed by a semiconductor device manufacturing capability. A total number of PMOS and NMOS transistor devices in the restricted layout region is greater than or equal to eight. The restricted layout region corresponds to an entire gate electrode level of a cell layout.
摘要:
A cell of a semiconductor device includes a substrate portion formed to include a plurality of diffusion regions, including at least one p-type diffusion region and at least one n-type diffusion region separated from each other by one or more non-active regions. The cell includes a gate electrode level including a number of conductive features defined to extend in only a first parallel direction. Each of the conductive features within the gate electrode level is fabricated from a respective originating rectangular-shaped layout feature. Some of the conductive features form respective PMOS and/or NMOS transistor devices. A number of the PMOS transistor devices is equal to a number of the NMOS transistor devices in the gate electrode level of the cell. The cell also includes a number of interconnect levels formed above the gate electrode level.