摘要:
The present disclosure attempts to provide a capacitor cell having a large capacitance value per unit area in a semiconductor integrated circuit device using a three-dimensional transistor device. A logic cell includes a three-dimensional transistor device. A capacitor cell includes a three-dimensional transistor device. A length of a portion, of a local interconnect, which protrudes from a three-dimensional diffusion layer in a direction away from a power supply interconnect in the capacitor cell is greater than a length of a portion, of a local interconnect, which protrudes from a three-dimensional diffusion layer in a direction away from a power supply interconnect in the logic cell.
摘要:
Provided is a semiconductor integrated circuit device including a nanowire field effect transistor (FET) and having a layout configuration effective for making manufacturing the device easy. A standard cell having no logical function is disposed adjacent to a standard cell having a logical function. The standard cell includes nanowire FETs having nanowires and pads. The standard cell further includes dummy pads, which have no contribution to a logical function of a circuit.
摘要:
Gate structures are positioned within a region in accordance with a gate horizontal grid that includes at least seven gate gridlines separated from each other by a gate pitch of less than or equal to about 193 nanometers. Each gate structure has a substantially rectangular shape with a width of less than or equal to about 45 nanometers and is positioned to extend lengthwise along a corresponding gate gridline. Each gate gridline has at least one gate structure positioned thereon. A first-metal layer is formed above top surfaces of the gate structures within the region and includes first-metal structures positioned in accordance with a first-metal vertical grid that includes at least eight first-metal gridlines. Each first-metal structure has a substantially rectangular shape and is positioned to extend along a corresponding first-metal gridline. At least six contact structures of substantially rectangular shape contact the at least six gate structures.
摘要:
Gate structures are positioned within a region in accordance with a gate horizontal grid that includes at least seven gate gridlines separated from each other by a gate pitch of less than or equal to about 193 nanometers. Each gate structure has a substantially rectangular shape with a width of less than or equal to about 45 nanometers and is positioned to extend lengthwise along a corresponding gate gridline. Each gate gridline has at least one gate structure positioned thereon. A first-metal layer is formed above top surfaces of the gate structures within the region and includes first-metal structures positioned in accordance with a first-metal vertical grid that includes at least eight first-metal gridlines. Each first-metal structure has a substantially rectangular shape and is positioned to extend along a corresponding first-metal gridline. At least six contact structures of substantially rectangular shape contact the at least six gate structures.
摘要:
According to one embodiment, a semiconductor memory 100 includes a memory cell array 100A composed of a plurality of SRAM cells 10 including NMOS transistors and PMOS transistors, and a bias circuit 100B connected to a ground GND1 or power supply voltage VDD1 of the memory cell array 100A. The bias circuit 100B includes NMOS transistors 121, 122, 133 and 134 that are same as the NMOS transistors of the SRAM cells 10 in terms of channel length and channel width and in terms of dopant and dose amount at a channel portion, and PMOS transistors 111 and 112 that are same as the PMOS transistors of the SRAM cells 10 in terms of channel length and channel width and in terms of dopant and dose amount at a channel portion. Diffusion regions of the NMOS transistors and the PMOS transistors are formed in a same semiconductor layer.
摘要:
A first linear-shaped conductive structure (LSCS) forming gate electrodes of both a first p-transistor and a first n-transistor. A second LSCS forming a gate electrode of a second p-transistor and including an extension portion extending away therefrom. A third LSCS forming a gate electrode of a second n-transistor and including an extension portion extending away therefrom. A fourth LSCS forming a gate electrode of a third p-transistor and including an extension portion extending away therefrom. A fifth LSCS forming a gate electrode of a third n-transistor and including an extension portion extending away therefrom. A sixth LSCS forming gate electrodes of both a fourth p-transistor and a fourth n-transistor. Four contact structures respectively contacting the extension portions of the second, third, fourth, and fifth LSCS's, such that at least two of the extension portions extend different distances beyond their contact structure.
摘要:
A cell of a semiconductor device includes a diffusion level including a plurality of diffusion regions separated by inactive regions. The cell includes a gate electrode level including conductive features defined to extend in only a first parallel direction. Adjacent conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features that are separated from each other by an end-to-end spacing having a size that is substantially equal and minimized across the gate electrode level region. Some of the conductive features form respective PMOS and/or NMOS transistor devices. A total number of the PMOS and NMOS transistor devices in the cell is greater than or equal to eight. A width of the conductive features within a five wavelength photolithographic interaction radius is less than a wavelength of light of 193 nanometers as used in a photolithography process for their fabrication.
摘要:
A cell of a semiconductor device includes a diffusion level including a plurality of diffusion regions separated by inactive regions. The cell also includes a gate electrode level including conductive features defined to extend in only a first parallel direction. Adjacent ones of the conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features that are separated from each other by an end-to-end spacing having a size that is substantially equal across the gate electrode level region and is minimized to an extent allowed by a semiconductor device manufacturing capability. Some of the conductive features form respective PMOS and/or NMOS transistor devices. A total number of the PMOS and NMOS transistor devices in the cell is greater than or equal to eight. The cell also includes a number of interconnect levels formed above the gate electrode level.
摘要:
A semiconductor device includes a substrate portion having a plurality of diffusion regions defined therein. The semiconductor device includes a gate electrode level region including a number of conductive features defined to extend in only a first parallel direction. Adjacent ones of the number of conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features that are separated from each other by an end-to-end spacing having a size that is substantially equal across the gate electrode level region and is minimized to an extent allowed by a semiconductor device manufacturing capability. Some of the conductive features within the gate electrode level region extend over the plurality of diffusion regions to form PMOS or NMOS transistor devices. A total number of the PMOS and NMOS transistor devices in the gate electrode level region is greater than or equal to eight.
摘要:
A semiconductor device includes a substrate portion including a plurality of diffusion regions defined in a non-symmetrical manner relative to a virtual bisecting line. A gate electrode level region above the substrate portion includes a number of conductive features that extend in only a first parallel direction. Adjacent conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features separated by an equal and minimal sized end-to-end spacing. Conductive features are defined along at least four different virtual lines of extent in the first parallel direction. A width of the conductive features within a photolithographic interaction radius is less than a wavelength of light of 193 nanometers as used in a photolithography process for their fabrication. The photolithographic interaction radius is five times the wavelength of light used in the photolithography process.