Abstract:
According to an aspect, a liquid crystal display device includes: a first substrate and a second substrate that face each other; a liquid crystal layer provided between the first substrate and the second substrate; and a first electrode and a second electrode provided between the first substrate and the liquid crystal layer. The first electrode includes: at least an electrode base portion that extends in a first direction; and a plurality of comb-shaped portions that protrude from the electrode base portion at a fixed distance away from each other, and extend in a second direction different from the first direction. Each comb-shaped portion has a coupling portion layered on or under the electrode base portion.
Abstract:
According to one embodiment, a sensor-equipped display device includes a display panel, a detection electrode, a conductive member arranged at intervals from the display panel and the detection electrode, and controller. In a first sense period, the controller drives a common electrode of the display panel or the detection electrode and extracts input position data from the detection electrode. In a second sense period, the controller drives the conductive member and extracts first input pressure data from a first electrode, the controller drives a second electrode and extracts second input pressure data from the conductive member, or the controller drives a third electrode and extracts third input pressure data from the third electrode.
Abstract:
A display apparatus including a display section including an array of pixels in a two-dimensional matrix, wherein each of the pixels of the display section includes a pair of a subpixel displaying a first primary color, and a subpixel displaying a second primary color being different from the first primary color.
Abstract:
According to an aspect, a transflective liquid crystal display device includes: a first substrate on which reflective electrodes are arranged for pixels; a second substrate on which a transparent electrode is provided; a liquid crystal layer between the first and the second substrates; and a color filter that is provided closer to the transparent electrode than the reflective electrodes, and includes filters of a plurality of colors. The first substrate is provided with a first space between reflective electrodes of adjacent pixels and a second space between reflective electrodes of adjacent pixels, the first space extending in a first direction and overlapping a border between filters of different colors, the second space extending in a second direction and having transmittance higher than that of the first space. Transmissive display is performed by using the second space where a light shielding member is not positioned.
Abstract:
According to an aspect, a display device includes: an image display panel in which pixel units each including a first pixel including a first, a second, and a third sub pixels, and a second pixel including the first, the second, and a fourth sub pixels are periodically arranged; and a signal processing unit. The signal processing unit obtains a corrected output signal of the third sub pixel of the first pixel based on an input signal of the third sub pixel of the first pixel and an input signal of the third sub pixel of the second pixel of the same pixel unit, and obtains a corrected output signal of the fourth sub pixel of the second pixel based on an input signal of the fourth sub pixel of the first pixel of the same pixel unit and an input signal of the fourth sub pixel of the second pixel.
Abstract:
A display device includes a reflective image display unit having a sheet-like anisotropic scattering member. The sheet-like anisotropic scattering member has a surface in which both a low refractive index area and a high refractive index area exist. The sheet-like anisotropic scattering member is disposed so that a light enters from a first surface thereof and exits as scattered light from a second surface thereof, when an extent of refractive index difference at a boundary or vicinity thereof between the low refractive index area and the high refractive index area is relatively large in the first surface and relatively small in the second surface.
Abstract:
According to an aspect, a transflective liquid crystal display device includes: a first substrate on which reflective electrodes are arranged for pixels; a second substrate on which a transparent electrode is provided; a liquid crystal layer between the first and the second substrates; and a color filter that is provided closer to the transparent electrode than the reflective electrodes, and includes filters of a plurality of colors. The first substrate is provided with a first space between reflective electrodes of adjacent pixels and a second space between reflective electrodes of adjacent pixels, the first space extending in a first direction and overlapping a border between filters of different colors, the second space extending in a second direction and having transmittance higher than that of the first space. Transmissive display is performed by using the second space where a light shielding member is not positioned.
Abstract:
According to an aspect, a display device includes a plurality of pixels each including a plurality of sub-pixels. Each of the sub-pixels is arranged around center of the corresponding pixel and divided into a plurality of display regions to perform N-bit area coverage modulation by a combination of the display regions. The display regions are arranged in such a manner that: a display region corresponding to a least significant bit of the area coverage modulation is arranged closest to the center of the corresponding pixel; and a display region corresponding to a higher significant bit of the area coverage modulation is arranged around the center of the pixel and further from the center of the corresponding pixel (N is a natural number of 2 or more).
Abstract:
A display device includes: sub-pixels each including a memory block including memories; memory selection line groups each including memory selection lines electrically coupled to the memory blocks in the sub-pixels that belong to the corresponding row; a memory selection circuit configured to concurrently output memory selection signals to the memory selection line groups; a potential line; a conduction switch provided for at least one memory in the memory block on a one-to-one basis; and an operating-memory conduction circuit configured to output, to the conduction switch, an operation signal for determining whether to electrically couple or uncouple the potential line and the corresponding one memory. Each memory is capable of storing sub-pixel data therein when being coupled to the potential line. Each sub-pixel displays an image based on the sub-pixel data stored in one memory in the sub-pixel according to the memory selection line supplied with the memory selection signal.
Abstract:
A sensor-equipped display device is provided and includes display panel including first and second substrates, common electrode, and polarizer; backlight unit which emits light toward display panel, including light guide opposed to polarizer and light source which emits light toward light guide; conductive member arranged at back side of display panel and opposed to polarizer; controller; first flexible printed circuit; and second flexible printed circuit, wherein first flexible printed circuit is connected to display panel, second flexible printed circuit is connected to back side of first flexible printed circuit, common electrode is connected to controller via first flexible printed circuit, second flexible printed circuit comprises first branch portion and second branch portion, first branch portion is connected to light source, and conductive member is connected to controller via second branch portion of second flexible printed circuit and first flexible printed circuit.