Abstract:
The disclosed invention provides a structure and method for easily measuring capacitive and/or resistive components of a sensor system. In one embodiment, the structure comprises a signal generator configured to output a load current to a measurement element containing measurement sensor elements and a parasitic capacitance. A controllable excitation voltage is generated, via integration of the load current on the parasitic capacitance, and output to the measurement sensor elements having capacitive and resistive components. The controlled voltage through the measurement device may be manipulated to cause the capacitive and resistive components to exhibit a transient effect. The resulting output current, provided from the measurement device therefore has transient response characteristics (e.g., the settling time, amplitude) that can be selectively measured by a measurement circuit to easily determine values of the capacitive and resistive measurement elements. Furthermore, dedicated demodulation techniques may be used to measure the capacitive and resistive components.
Abstract:
A system including a first circuit, a second circuit, and a feedback circuit. The first circuit is configured to provide input signals. The second circuit is configured to receive the input signals and provide digital output signals that correspond to the input signals. The feedback circuit includes a chopping circuit, an integrator circuit, and a digital to analog converter circuit. The digital to analog converter circuit is configured to convert an error signal into an analog signal that is received by the second circuit to reduce ripple error.
Abstract:
A system including a first transistor, a first capacitor and a circuit. The first transistor has a first control input and is configured to regulate an output voltage. The first capacitor is coupled at one end to the first control input and at another end to a circuit reference. The circuit is configured to provide a first voltage to the first control input, where the first voltage includes an offset voltage that is referenced to the output voltage and adjusted to compensate for variations in the first transistor.
Abstract:
One embodiment of the present invention relates to a magnetic sensor circuit having a magnetic field sensor device configured to generate a digital signal proportional to an applied magnetic field. An analog-to-digital converter converts the analog signal to a digital signal that is provided to a digital signal processing unit, which is configured to digitally track the analog output signal. The digital tracking unit comprises a delay removal circuitry configured to generate a plurality of digital signal component corresponding to a chopping phase. A non-delayed offset compensated digital output signal may be generated within the chopping phase by mathematically operating upon (e.g., adding or subtracting) the plurality of digital signal components, generated by the delay removal circuitry.
Abstract:
Embodiments relate to stress sensing devices and methods. In an embodiment, a sensor device includes an active layer; and at least three contacts spaced apart from one another in the active layer, the at least three contacts being coupleable in a first configuration for a first operating mode of the sensor device in which a current in the active layer has a first ratio of horizontal to vertical components with respect to a die surface and in a second configuration different from the first for a second operating mode of the sensor device in which a current in the active layer has a second ratio of horizontal to vertical components, wherein a ratio of a resistance between at least two of the contacts in the first operating mode and a resistance between at least two of the contacts in the second operating mode is related to mechanical stress in the sensor device.
Abstract:
A system including a spinning current Hall sensor and a chopping circuit. The spinning current Hall sensor is configured to provide input signals and the chopping circuit is configured to receive the input signals. Spinning phases of the spinning current Hall sensor are lengthened in residual offset adjustment phases to obtain signals that correspond to the residual offset voltages of the spinning phases.
Abstract:
A system including a spinning current Hall sensor and a chopping circuit. The spinning current Hall sensor is configured to provide input signals and the chopping circuit is configured to receive the input signals. Spinning phases of the spinning current Hall sensor are lengthened in residual offset adjustment phases to obtain signals that correspond to the residual offset voltages of the spinning phases.
Abstract:
Embodiments relate to an ultra-low-power, high-voltage integrated circuit (IC) that also has high electromagnetic compatibility (EMC). Embodiments address the desire for an ultra-low-power, high-voltage IC that also has high EMC and comprise a high-voltage EMC protection circuit with normal current consumption coupled to an ultra-low-power, low-voltage oscillator that controls a sleep/wake, or duty, cycle of a high-voltage circuit.
Abstract:
A system including a first circuit, a second circuit, and a feedback circuit. The first circuit is configured to provide input signals. The second circuit is configured to receive the input signals and provide digital output signals that correspond to the input signals. The feedback circuit includes a chopping circuit, an integrator circuit, and a digital to analog converter circuit. The chopping circuit is configured to receive the digital output signals and provide error signals that represent ripple error in the digital output signals. The integrator circuit is configured to accumulate the error signals and provide an accumulated error signal. The digital to analog converter circuit is configured to convert the accumulated error signal into an analog signal that is received by the second circuit to reduce the ripple error.
Abstract:
An integrated circuit includes a semiconductor die including a first magnetic field sensor. The integrated circuit includes an isolation material layer over the first magnetic field sensor and a sintered metal layer over the isolation material layer. The first magnetic field sensor is configured to sense a magnetic field generated by a current passing through the sintered metal layer.