Abstract:
An electrical inspection system for an elevator load bearing member includes an electrically conductive, low resistance wrap located at the load bearing member, contacting the load bearing member around a circumference of the load bearing member. An inspection unit is configured to apply an electrical current through the load bearing member and determine an electrical resistance of the load bearing member, and is electrically connected to the load bearing member at the wrap to distribute electrical current uniformly therethrough. A method of determining an electrical resistance of a load bearing member of an elevator system includes applying an electrically conductive low electrical resistance wrap entirely around a circumference of the load bearing member. An inspection unit is connected to the load bearing member at the wrap. An electrical current is applied through the wrap into the load bearing member to determine an electrical resistance of the load bearing member.
Abstract:
A method of fault detection of a belt or rope includes interconnecting a plurality of cords of the belt or rope, the cords including a plurality of wires, to form a bridge circuit. A fault detection bridge circuit is subjected to a voltage excitation and outputs a voltage which is indicative of the belt or rope damage but remaining insensitive to other environmental noises.
Abstract:
An elevator system includes one or more rails fixed in a hoistway and an elevator car configured to move through the hoistway along the one or more rails. The system includes one or more braking systems having one more braking surfaces secured to the elevator car and frictionally engageable with one or more rails of the elevator system. One or more actuators are operably connected to the one or more braking surfaces configured to urge engagement and/or disengagement of the one or more braking surfaces with the rail to stop and/or hold the elevator car during operation of the elevator system.
Abstract:
A ropeless elevator system includes a first lane, a second lane disposed adjacent to the first lane, and an elevator car moveable within each of the first lane and the second lane. A transfer system is configured to facilitate movement of the elevator car from one of the first lane and the second lane to the other of the first lane and the second lane. The transfer system includes a first transfer assembly arranged in at least one of the first and second lanes. The first transfer assembly is configured to guide the elevator car out of the one of the first and second lanes. A transfer station includes a second transfer assembly configured to receive the elevator car from the first transfer assembly. The second transfer assembly extends between the first and second lanes.
Abstract:
An elevator system includes a car, configured to travel through a hoistway; a first stationary drive unit, con figured to be mounted in a hoistway, a first movable drive unit, configured to be functionally coupled to the car and toDrive the first stationary drive unit, and a second movable drive unit, configured to be functionally coupled to the car and to the first stationary drive unit.
Abstract:
An elevator system includes a first propulsion system for imparting linear motion to an elevator car; a controller generating control signals for the first propulsion system; a brake for holding the elevator car; an energy storage unit; and a second propulsion system; the controller configured to at least one of (i) access the energy storage unit to power at least one of the first propulsion system and second propulsion system upon a fault during upward travel of the elevator car (ii) power the second propulsion system upon a fault in the first propulsion system during upward travel of the elevator car and (iii) delay applying the brake until the elevator car speed is less than a threshold upon a fault during upward travel of the elevator car.
Abstract:
A method of making a guide rail for an elevator system method comprising the steps of: providing a guide rail; applying a protective layer to the guide rail for corrosion protection; and removing at least a portion of the protective layer. A sheet metal guide rail for an elevator system comprises a base portion; and a blade portion extending from the base portion. The blade portion includes: a first section for engaging a guiding device and/or a safety of the elevator system; and a second section for engaging a guiding device and/or a safety of the elevator system. The second section contacts the first section. The sheet metal guide rail could be made using the aforementioned method.
Abstract:
A resistance circuit for monitoring a support structure is provided. The resistance circuit may include a first set of resistors disposed at a belt-side and a second set of resistors disposed at a monitor-side. The first set of resistors may be configured to indicate one or more voltages thereacross corresponding to an effective resistance of the support structure. The first set of resistors may include at least one temperature-dependent resistor. The second set of resistors may be configured to indicate one or more voltages thereacross corresponding to an initial effective resistance of the support structure. The second set of resistors may include at least one switched resistor having an adjustable resistance capable of selectively approximating the initial effective resistance.