Abstract:
A communications plug is described. The communications plug includes a plug housing and a cable manager partially enclosed within the plug housing. The cable manager has a first cable management section and a second cable management section connected to opposing ends of a bridge section. The first and second cable management sections are configured to fold together along at least one longitudinal axis of the cable manager around a portion of the cable before the cable manager is inserted into the plug housing.
Abstract:
Embodiments of the present invention relate to the field of telecommunication, and more specifically, to communication connectors such as, for example, shielded plug and jack connectors. In an embodiment, the present invention is a communication jack that includes a housing and a front sled assembly having a plurality of plug interface contacts (PICs), the front sled assembly being moveable along a horizontal plane of the communication jack between a first position and a second position, the first position being different from the second position.
Abstract:
Various implementations of lead frame style communications connectors are disclosed. In some implementations, a lead frame style communications connector may include a plurality of conductors each including a plug contact region and an opposing cable conductor termination region. Each of the plurality of conductors may be arranged in one of a first subset of conductors and a second subset of conductors. The lead frame style communications connector a mandrel separating the first subset of conductors from the second subset of conductors.
Abstract:
A communication plug is described. The communication plug has a communication cable with a plurality of conductors, a plug housing, and a cable manager partially enclosed within the plug housing. The cable manager has a load bar with a plurality of holes, a first cable management section connected to the load bar via a first hinge, and a second cable management section connected to the load bar via a second hinge. The first and second cable management sections are configured to fold together and partially enclose the cable before the cable manager is inserted into the plug housing.
Abstract:
A communication connector including a plurality of conductors each having a plug contact region and an opposing cable conductor termination region. The plurality of conductors are arranged in respective communication pairs. The communication connector includes a coupling zone between a first conductor of a first communication pair and a second conductor of a second communication pair. The coupling zone has at least one first conductive finger connected to the first conductor and at least one second conductive finger connected to the second conductor, each of the first conductive fingers are adjacent to at least one of the second conductive fingers.
Abstract:
A communication plug is described. The communication plug has a communication cable with a plurality of conductors, a plug housing, and a cable manager partially enclosed within the plug housing. The cable manager has a load bar with a plurality of holes, a first cable management section connected to the load bar via a first hinge, and a second cable management section connected to the load bar via a second hinge. The first and second cable management sections are configured to fold together and partially enclose the cable before the cable manager is inserted into the plug housing.
Abstract:
The present invention generally relates to the field of telecommunication, and more particularly, to the field of connectors such as plugs and/or jacks used to interconnect electronic equipment. In an embodiment, the present invention is a shielded RJ45 network jack with an inter-jack connection method that has an electrical disengagement point outside of any electrical mating points, while still allowing for a relatively short distance to compensation from the plug/jack mating interface.
Abstract:
A faceplate assembly is disclosed. The faceplate assembly includes a cover and a backing plate. The cover has at least one hood positioned at an edge of the cover. The backing plate is connected to the cover. The hood creates an opening between the cover and the backing plate to enable cables to be routed therethrough. The backing plate also has an outer edge with a split to enable the backing plate to be installed over pre-installed cables.
Abstract:
A communication system has a support and a communication connector attached to the support wherein the connector assembly has a termination lever. The system can further include a wire cap connected to a plurality of cable conductors. The wire cap can include a cover cap. The cover cap latches to the connector assembly when the wire cap and the plurality of cable conductors is terminated to the communication connector assembly. The support can be one of a faceplate, a patch panel, a surface mount box, or a media distribution unit.