Abstract:
To perform erasure detection for an intermittently active transport channel with unknown format, a receiver determines an energy metric and a symbol error rate (SER) for a received block with CRC failure. The receiver computes uncorrelated random variables u and v for the received block based on the energy metric and SER, the estimated means and standard deviations of the energy metric and SER, and a correlation coefficient indicative of the correlation between the energy metric and SER. The receiver then evaluates the uncorrelated random variables u and v based on at least one decision criterion and declares the received block to be an erased block or a DTX block based on the result of the evaluation. The decision criterion may be defined based on a target probability of false alarm and adjusted based on another metric, such as a zero state bit, for the received block.
Abstract:
User experiences on wireless devices are affected by communication, computation, and user interface capabilities. Another key performance indicator of a wireless device is its battery life. A method, algorithm and apparatus for improving the communication, computation and user interface capabilities of a mobile device is disclosed, which requires the expenditure of less energy and increases battery life. The trade-off between battery life and user experience related to the communication capability is managed by a protocol stack power optimization algorithm that optimally allocates energy resources. The power management algorithm inputs and combines measurements made at various layers of the protocol stack to selectively control a set of actions impacting energy usage. The algorithm maps from a set of measurements to a set of actions that provides the best trade-off between user experience and energy consumption.
Abstract:
Techniques for filtering noisy estimates to reduce estimation errors are described. A sequence of input values (e.g., for an initial channel impulse response estimate (CIRE)) is filtered with an infinite impulse response (IIR) filter having at least one coefficient to obtain a sequence of output values (e.g., for a filtered CIRE). The coefficient(s) are updated based on the sequence of input values with an adaptive filter, a bank of prediction filters, or a normalized variation technique. To update the coefficient(s) with the adaptive filter, a sequence of predicted values is derived based on the sequence of input values. Prediction errors between the sequence of predicted values and the sequence of input values are determined and filtered to obtain filtered prediction errors. The coefficient(s) of the IIR filter are then updated based on the prediction errors and the filtered prediction errors.
Abstract:
An apparatus, system, and method efficiently manage transmission power in a user equipment (UE) device by maintaining and applying an authorized power level to determine a transmission power level after a power limited transmission and before a new power control command has been received. The UE device maintains the authorized power level by monitoring and adjusting the authorized power level based on received power control commands. After a power limited transmission where the maximum power level is less than the authorized power level, the UE device determines the transmission power level for the next transmission based on the authorized power level. Accordingly, after the power limiting situation has ceased, the UE device transmits at the optimum power level eliminating the inefficiencies of transmitting at a lower than authorized power before the next power control command is received.
Abstract:
A circuit and algorithm are disclosed for a step2 search of a three step search of synchronization channels in a W-CDMA system. A mobile terminal of the CDMA system includes an RF downconverter for receiving I and Q signals. A searcher, responsive to the I and Q signals, includes a first correlator for correlating the I and Q signals with a primary synchronization code on a primary synchronization channel, and a second correlator for correlating I and Q signals with a secondary synchronization code on a secondary synchronization channel. The correlated I and Q signals are added for each of the secondary synchronization codes. An energy calculator and a maximum energy detector use the correlated I and Q signals of both the primary and secondary synchronization channels to detect the most likely scrambling code group of secondary synchronization codes.
Abstract:
A circuit and algorithm are disclosed for a step2 search of a three step search of synchronization channels in a W-CDMA system. A mobile terminal of the CDMA system includes an RF downconverter for receiving I and Q signals. A searcher, responsive to the I and Q signals, includes a first correlator for correlating the I and Q signals with a primary synchronization code on a primary synchronization channel, and a second correlator for correlating I and Q signals with a secondary synchronization code on a secondary synchronization channel. The correlated I and Q signals are added for each of the secondary synchronization codes. An energy calculator and a maximum energy detector use the correlated I and Q signals of both the primary and secondary synchronization channels to detect the most likely scrambling code group of secondary synchronization codes.
Abstract:
Techniques for performing equalization at a receiver are described. In an aspect, equalization is performed by sub-sampling an over-sampled input signal to obtain multiple sub-sampled signals. An over-sampled channel impulse response estimate is derived and sub-sampled to obtain multiple sub-sampled channel impulse response estimates. At least one set of equalizer coefficients is derived based on at least one sub-sampled channel impulse response estimate. At least one sub-sampled signal is filtered with the at least one set of equalizer coefficients to obtain at least one output signal. One sub-sampled signal (e.g., with largest energy) may be selected and equalized based on a set of equalizer coefficients derived from an associated sub-sampled channel impulse response estimate. Alternatively, the multiple sub-sampled signals may be equalized based on multiple sets of equalizer coefficients, which may be derived separately or jointly. The equalizer coefficients may be derived in the time domain or frequency domain
Abstract:
Techniques for performing adaptive channel estimation are described. A receiver derives channel estimates for a wireless channel based on received pilot symbols and at least one estimation parameter. The receiver updates the at least one estimation parameter based on the received pilot symbols. The at least one estimation parameter may be for an innovations representation model of the wireless channel and may be updated based on a cost function with costs defined by prediction errors. In one design, the receiver derives predicted pilot symbols based on the received pilot symbols and the at least one estimation parameter, determines prediction errors based on the received pilot symbols and the predicted pilot symbols, and further derives error gradients based on the prediction errors. The receiver then updates the at least one estimation parameter based on the error gradients and the prediction errors, e.g., if a stability test is satisfied.
Abstract:
Various embodiments are disclosed which predict the channel quality indicator (CQI) in High Speed Downlink Packet Access (HSDPA). The accuracy of CQI is crucial for HSDPA performance. In some HSDPA systems the CQI may be as much as three (3) subframes stale. Accordingly, the prediction of CQI values is required in order to efficiently schedule data for transmission over the communication channel. Various embodiments disclose first order adaptive IIR filters which are significantly less complex than the finite impulse response (FIR) counterparts and achieve similar accuracy. By minimizing the mean squared error (MSE), an exact gradient descent algorithm may be used as well as two embodiment pseudolinear regression algorithms.
Abstract:
In an antenna diversity environment, the timing offset of the receiver's fingers are based on the timing offset of the received peaks of the base station transmit signals. In a system with non-negligible multipath spacing, the timing offset of the received peaks of the base station transmit signals are not necessarily at the same location. In one embodiment, the demodulating elements for the signal from each base station antenna use the same offset for demodulating and determining an error signal based on pilot signal sampling prior to the timing offset and subsequent to the timing offset. The error signals are averaged and used by a time tracking loop to track the incoming signal. In another embodiment, the demodulating elements for the signal from each base station antenna independently time track the signals with different timing offsets for each finger. The preferred embodiment depends on the method used by the base station to multiplex the data onto multiple transmit antennas.