Abstract:
This disclosure provides systems, methods and apparatuses for detecting motion based on wireless signals. In some implementations, a receiving device may receive, from a transmitting device, a packet containing a sequence. In some aspects, the packet may be a Bluetooth packet, and the sequence may be contained in a supplemental information appended to the Bluetooth packet. The receiving device may estimate angle information of the packet based on the sequence, and determine a difference between the estimated angle information and a reference angle. The angle information may be an angle of arrival (AoA) or an angle of departure (AoD) of the packet. The receiving device may detect motion based on the determined difference.
Abstract:
Apparatuses and methods are disclosed for performing ranging operations between a first device and a second device. The first device may receive, from the second device, a fine timing measurement (FTM) request frame including a request to estimate angle information for a number of frames exchanged with the second device and indicating a level of accuracy for the estimated angle information. The first device may transmit a first FTM frame to the second device, may receive an acknowledgement (ACK) frame from the second device, and may transmit, to the second device, a second FTM frame including angle information of the first FTM frame and timing information of one or more of the exchanged frames.
Abstract:
Apparatuses and methods are disclosed that may perform ranging operations between a first device and a second device. The second device transmits an FTM request frame indicating a number of supported non-legacy ACK frame formats, and receives a first FTM frame indicating capabilities of the first device to receive each of the non-legacy ACK frame formats supported by the second device. The second device selects one of the non-legacy ACK frame formats or a legacy ACK frame format based, at least in part, on the indicated capabilities of the first device, and then transmits ACK frames using the selected frame format during the ranging operation.
Abstract:
Method, apparatus and systems for detecting motion of an object based on a received wireless signal include comparing a received wireless signal to an adaptive noise immunity threshold, if the received wireless signal satisfies the adaptive noise immunity threshold. The detecting motion is based at least in part on a comparison between a determined multipath amount of the received wireless signal and a reference multipath amount, and further by adjusting the adaptive noise immunity threshold from a first level to a second level prior to the comparing of the received wireless signal to the noise immunity threshold, where the second level is higher than the first level.
Abstract:
Methods, systems, and devices are described for wireless communication. An example method includes receiving, by a first wireless communication device having a plurality of antennas disposed at a localized position, a plurality of fine timing management (FTM) messages from a second wireless communication device. The example method includes transmitting, by the first wireless communication device, a plurality of FTM responses to the second wireless communication device. Each of the plurality of FTM responses may be transmitted using a different antenna of the first wireless communication device. The example method also includes estimating a range between the first wireless communication device and the second wireless communication device based at least in part on the plurality of FTM messages.
Abstract:
This disclosure includes systems and methods for determining the location of each of a plurality of STAs of a WLAN where an AP measures the round-trip time (RTT) and the angle of arrival (AOA) to each STA from implicit packet exchange, such as data frame and ACK frame. The AP may then report the RTT and AOA measurements to each STA using a dedicated beacon information element (IE) which multicasts RTT and AOA measurements to the STAs. By employing an additional parameter, namely, angle of arrival AOA, a single AP may compute the two-dimensional location of each associated STA. Further, another beacon IE may multicast mapping of the AIDs to MAC addresses so that the associated STAs can understand such mapping for STAs in a network so that one STA may know the location of other STAs. Encryption may be employed to achieve privacy.
Abstract:
A method and apparatus for broadcasting short interframe space information to aid in determining a round trip time are provided. The round trip time is used as an aid in locating nodes within a WiFi or WLAN network. The method begins with capturing a time of transmission of a frame by a transmitting station. The receiving station then captures the time of arrival of the frame just sent by the transmitting station. The receiving station replies with a received frame message and the time of departure is captured. The transmitting station then captures the time of arrival of the received frame message. The captured arrival and departure times of the frame and the received frame message allow the round trip time to be computed. The RTT may then be included as part of a network message.
Abstract:
A TOA positioning system can be implemented that employs a calculated initial location of a wireless network device. For each of a plurality of reference wireless network devices, a distance between the wireless network device and the reference wireless network device is determined based, at least in part, on a round trip transit time between the wireless network device and the reference wireless network device. An initial location of the wireless network device can be calculated based, at least in part, on a location of each of the plurality of reference wireless network devices. A location of the wireless network device can be estimated based, at least in part, on the calculated initial location, the distance to each of the reference wireless network devices, and an initial distance calibration constant.
Abstract:
Embodiments described herein address these and other issues by providing radio frequency (RF) sensing to determine the status of a driver or other occupant of the vehicle. RF sensing may be provided by existing radios of a vehicle, such a Wi-Fi transceiver, and may therefore provide RF sensing functionality to a vehicle with little added cost. RF sensing can be leveraged to implement safety features such as detecting an unattended child or pet in a vehicle, detecting driver alertness, and the like.
Abstract:
A method for wireless communication performed by a head-mounted user equipment (UE), the method includes determining a first spatial relationship between an eye of a human user of the head-mounted UE and physical transmission and reception ports of the head-mounted UE; based on the first spatial relationship, determining a second spatial relationship between a plurality of radio frequency (RF) beam directions of the head-mounted UE and the eye of the human user; selecting a first RF beam direction from among the plurality of RF beam directions based at least in part on the second spatial relationship with respect to the first RF beam direction; and transmitting or receiving RF radiation using a first RF beam conforming to the first RF beam direction.