Abstract:
A metal-air battery apparatus includes a temperature controller for controlling temperatures of a positive electrode and a negative electrode. The temperature controller includes a monitoring unit that may be separated from the temperature controller. The temperature of at least one of the positive electrode and the negative electrode may be controlled by monitoring an internal condition of the metal-air battery apparatus.
Abstract:
A metal-air battery includes a battery module configured to provide electricity by oxidation of a metal and reduction of oxygen in air; and a first air purifier in fluid communication with the battery module and including a condenser configured to condense moisture in the air and remove the condensed moisture.
Abstract:
A electrochemical battery including: a battery module including one or more metal air cells which use oxygen gas as a positive electrode active material; an air supply configured to supply air to the battery module and to adjust an oxygen concentration in air supplied to the battery module; and a control unit configured to control an oxygen concentration adjusting operation of the air supply unit. Also a method of operating the electrochemical battery including: supplying air to a battery module using an air supply unit, the battery module including one or more metal air cells which use oxygen in air as a positive electrode active material; and controlling the air supply unit to adjust an oxygen concentration in the air supplied to the battery module.
Abstract:
A polymer electrolyte for a lithium battery, the polymer electrolyte comprising a compound represented by Formula 1: wherein, in Formula 1, X1 to X6, Ar1, Ar2, R1, R2, m, and n are the same as defined in the detailed description of the present specification.
Abstract:
A metal-air battery cell includes: a negative electrode metal layer; a positive electrode layer configured to use oxygen as an active material for which a reduction/oxidation reaction of oxygen introduced thereto occurs; a negative electrode electrolyte film disposed between the negative electrode metal layer and the positive electrode layer in a thickness direction; and a channel layer disposed on the positive electrode layer and comprising a plurality of channel structures, the channel structures each elongated to extend in an extension direction crossing the thickness direction.
Abstract:
A metal-air battery includes a monolithic body including at least one channel; and at least one cell disposed between the channel and the body, the cell including a negative electrode including a metal, a positive electrode disposed apart from the negative electrode and configured to use oxygen as an active material, and an electrolyte disposed between the negative electrode and the positive electrode.