Abstract:
Provided are an optical modulating device and a system employing the same. The optical modulating device includes a phase modulator including a meta surface including a nanoantenna configured to couple light incident on the phase modulator, and including a quantum well layer having a multi-quantum well and configured to modulate a phase of light by modulating a refractive index according to an electrical control, and a reflective layer provided at on the phase modulator opposite to a side of the meta surface of the phase modulator and configured to resonate light coupled through the nanoantenna.
Abstract:
An image sensor includes a first light sensor layer including light sensing cells configured to sense first light of an incident light and generate electrical signals based on the sensed first light, and a color filter array layer disposed on the first light sensor layer, and including color filters respectively facing the light sensing cells. The image sensor further includes a second light sensor layer disposed on the color filter array layer, and configured to sense second light of the incident light and generate an electrical signal based on the sensed second light. Each of the color filters includes a nanostructure including a first material having a first refractive index, and a second material having a second refractive index greater than the first refractive index, the first material and the second material being alternately disposed with a period.
Abstract:
An image sensor includes a substrate, thin lenses disposed on a first surface of the substrate and configured to concentrate lights incident on the first surface, and light-sensing cells disposed on a second surface of the substrate, the second surface facing the first surface, and the light-sensing cells being configured to sense lights passing through the thin lenses, and generate electrical signals based on the sensed lights. A first thin lens and second thin lens of the thin lenses are configured to concentrate a first light and a second light, respectively, of the incident lights onto the light-sensing cells, the first light having a different wavelength than the second light.
Abstract:
A method of manufacturing an image senor includes: preparing a sensor substrate including: a sensor layer including a photosensitive cell; and a signal line layer including lines to receive electric signals from the photosensitive cell; forming a first material layer having a first refractive index on the sensor substrate; and forming a nanopattern layer on the first material layer, the nanopattern layer including a material having a second refractive index different from the first refractive index.
Abstract:
A spatial light modulator including an electrode having a nano-antenna structure, and a display apparatus including the spatial light modulator are provided. The spatial light modulator includes a refractive index changing layer, and a pixel electrode and a common electrode which are configured to apply an electric field to the refractive index changing layer, and at least one of the pixel electrode and the common electrode include a nano-antenna pattern structure configured to resonate light.
Abstract:
Provided is a device including a substrate and an overlay target structure provided on the substrate, the overlay target structure includes a first alignment key having a plurality of line masks having a first width and arranged at a first pitch, a second alignment key having a plurality of line masks having a second width and arranged at a second pitch, and a nanostructure layer arranged between the first alignment key and the second alignment key, and including a plurality of nanostructures having widths less than or equal to the first width and the second width, and arranged at a pitch less than the first pitch and the second pitch.
Abstract:
A see-through type display apparatus includes an image projector configured to output image light, a waveguide configured to receive the image light output from the image projector and transmit the image light to a user's view, and a first lens having a negative refractive power and a second lens having a positive refractive power, which are arranged on both surfaces of the waveguide. Each of the first lens and the second lens includes one or more meta lenses and is configured to operate as a lens with almost no chromatic aberration, thereby implementing a thin optical system having good image quality.
Abstract:
Provided are an optical modulating device and a system including the optical modulating device. The optical modulating device includes a substrate, and a phase modulator formed on the substrate and including a Fabry-Perot cavity. The Fabry-Perot cavity of the phase modulator includes a first reflective layer, a second reflective layer, and a tunable core formed between the first reflective layer and the second reflective layer, wherein the tunable core is formed of a semiconductor material and is configured to modulate a phase of light corresponding to modulation of a refractive index of the tunable core according to electrical control.
Abstract:
Provided are an illumination device and an electronic apparatus. The illumination device includes a light source configured to emit light, a surface light source layer configured to convert the light emitted from the light source to surface light, a focusing lens configured to focus the surface light from the surface light source layer, and a display panel including an aperture through which light focused by the focusing lens passes.
Abstract:
A display device includes: an image projector including an image forming device and a meta-lens module and configured to output image light formed by the image forming device; and a meta-waveguide configured to transfer the image light output from the image projector, to an observer's field of view, the meta-waveguide including waveguide element configured to totally reflect light inside, an input coupler including a plurality of first nanostructures forming a first phase gradient in a first direction and configured to couple the image light from the image projector to an inside of the waveguide element, and an output coupler including a plurality of second nanostructures forming a second phase gradient in a second direction different from the first direction and configured to output the light coupled to the inside of the waveguide element by the input coupler, to an outside of the waveguide element.