摘要:
Techniques for enhancing the throughput capacity available to client devices connected to a wireless local area network (WLAN) are described. Specifically, existing WLAN resources are converted into wireless access points (APs) to create a dense infrastructure of wireless APs. To leverage this dense AP infrastructure, central management techniques are employed. With client-to-AP mapping, these techniques are used to prevent the discovery of multiple APs in a WLAN by a client device and to select a single AP (using certain policies) to associate with the client device and provide it with an enhanced wireless connection to the WLAN. Additionally, techniques are employed to centrally determine, using central policies, when the AP should disassociate from the client device and when another centrally selected AP should respond to, and associate with, the client device to provide it with an enhanced wireless connection to the WLAN—without interrupting/disrupting the client device's access.
摘要:
Functionality is described by selecting a channel in an environment in which non-privileged entities have subordinate access rights to spectrum compared to privileged entities. The functionality operates by identifying spectrum that is available to all nodes involved in communication (where the nodes are associated with non-privileged entities). The functionality then generates a suitability assessment for each candidate channel within the available spectrum. The functionality selects a channel having the most desirable suitability assessment. The functionality can form a suitability assessment for a candidate channel of arbitrary width, e.g., by combining suitability assessments associated with constituent spectrum units within the candidate channel.
摘要:
Context-based routing in multi-hop networks involves using a context-based routing metric. In a described implementation, respective path values are calculated for respective ones of multiple paths using the context-based routing metric. A path is selected from the multiple paths responsive to the calculated path values. Data is transmitted over at least one link of the selected path. In an example embodiment, the context-based routing metric is ascertained responsive to an estimated service interval (ESI) of a bottleneck link of each path of the multiple paths. In another example embodiment, the context-based routing metric is ascertained responsive to an expected resource consumption (ERC) metric. In an example embodiment of path selection, the path is selected using a context-based path pruning (CPP) technique that involves maintaining multiple local contexts at each intermediate node, with each local context representing at least one partial path.
摘要:
A system and method that allows a user to concurrently connect to multiple wireless networks with a single network interface card is presented. The networks may be infrastructure (“IS”) networks and ad hoc (“AH”) networks. A driver is inserted into a device's networking stack and exposes a plurality of virtual wireless network adapters, one for each network. The adapters are enabled and disabled in accordance with which network is presently activated. Packets for a network are queued when the network is not enabled. The wireless driver controls the switching of the network card. In one embodiment where multiple wireless cards are switching in and out of AH networks, the method converges the switching times for the cards in an AH network to ensure concurrent connectivity in the AH network for at least a brief time period every switching cycle of the wireless cards.
摘要:
The claimed subject matter provides a system and/or a method that facilitates managing a network by mining a communication rule. An analysis engine can employ a packet trace within a network in order to provide timing information, wherein the network includes at least one of a host, a protocol, or an application. A traffic evaluator can extract a communication rule for the network based upon an activity matrix generated from the timing information in which the activity matrix includes at least one of a row of a time window for the packet trace and a column for a flow in the packet trace.
摘要:
A dual mode communication device utilizes a control channel to exploit diversity, history, and context in advance of establishing a broadband data exchange session on a broadband but shorter range wireless data channel, maximizing productive use of such a session. Appropriate diversity for the negotiated session further enhance data transfer, including path diversity, radio technology diversity (e.g., WiMax, Wi-Fi, ultra wideband, Bluetooth), antenna diversity (e.g., MIMO), modulation diversity (e.g., rate selection for 802.11, or symbol length selection to combat multi-path fading), and frequency diversity (e.g., 2.4 GHz versus 5 GHz). Historical information about channel characteristics optimize the selection of channel parameters with respect to the diversity choices. In addition, context information such as location and speed can be used to categorize the historical information that is collected to further optimize channel parameters.
摘要:
Techniques for enhancing the throughput capacity available to client devices connected to a wireless local area network (WLAN) are described. Specifically, existing WLAN resources are converted into wireless access points (APs) to create a dense infrastructure of wireless APs. To leverage this dense AP infrastructure, central management techniques are employed. With client-to-AP mapping, these techniques are used to prevent the discovery of multiple APs in a WLAN by a client device and to select a single AP (using certain policies) to associate with the client device and provide it with an enhanced wireless connection to the WLAN. Additionally, techniques are employed to centrally determine, using certain policies, when the AP should disassociate from the client device and when another centrally selected AP should respond to, and associate with, the client device to provide it with an enhanced wireless connection to the WLAN—without interrupting/disrupting the client device's access.
摘要:
Constructing an inference graph relates to the creation of a graph that reflects dependencies within a network. In an example embodiment, a method includes determining dependencies among components of a network and constructing an inference graph for the network responsive to the dependencies. The components of the network include services and hardware components, and the inference graph reflects cross-layer components including the services and the hardware components. In another example embodiment, a system includes a service dependency analyzer and an inference graph constructor. The service dependency analyzer is to determine dependencies among components of a network, the components including services and hardware components. The inference graph constructor is to construct an inference graph for the network responsive to the dependencies, the inference graph reflecting cross-layer components including the services and the hardware components.
摘要:
Wireless adapters are installed on one or more general purpose computing devices and are connected via a network in an enterprise environment. The adapters are densely deployed at known locations throughout the environment and are configured as air monitors. The air monitors monitor signals transmitted by one or more transceiver devices and records information about these signals. One or more analysis or inference engines may be deployed to obtain the recorded signal information and the air monitor locations to determine a location of the one or more wireless transceivers devices deployed in the environment.
摘要:
A new media access control (MAC) protocol for cognitive wireless networks is described. The new MAC protocol allows each of multiple nodes, such as cell phones and computers with wireless, to determine utilization of a communication spectrum, such as the television broadcast band. The nodes collaborate to achieve a combined view of spectrum utilization in their local vicinity, in which scheduled users and empty time segments are mapped across a wide range of frequencies. Nodes negotiate with each other to reserve idle segments of the spectrum for packet exchange on negotiated frequencies. Control packet structure allows nodes to become prescient of the local spectrum utilization during handshaking. A cognitive device operating under the new MAC has a first radio that both scans the spectrum and monitors a control channel; and a second reconfigurable radio with adjustable parameters, including frequency and bandwidth, for packet transmission.