摘要:
Methods and systems for utilizing undersampling for crystal leakage cancellation are disclosed and may include undersampling a composite signal comprising a desired signal and leakage signals due to one or more clock signals. Measured DC signals generated by each of the undersampled signals may be reduced by adjusting the phase and/or amplitude of the clock signals. The undersampling may be performed at one or more of the one or more clock signals, or at integer sub-harmonics of the clock signals. The composite signal may include a signal received by a wireless system or a signal to be transmitted by the wireless system. The undersampled signals may be low-pass filtered. The desired signal may include in-phase and quadrature signals or a polar signal. The undersampling may be performed by one or more sample and hold circuits and the clock signals may be generated utilizing one or more crystal oscillators.
摘要:
Aspects of a method and system for a transformer in an integrated circuit package are provided. In this regard, signals may be transmitted and/or received via an antenna communicatively coupled to a transformer embedded in multi-layer integrated circuit package. The windings ratio of the transformer may be configured based on an impedance of the antenna, an impedance of a transmitter coupled to the transformer, an impedance of an LNA coupled to the transformer, and/or a power level of the received and/or transmitted signals. The windings ratio may be configured via one or more switching elements which may be MEMS switches embedded in the multi-layer IC package. The transformer may comprise a plurality of loops fabricated on a corresponding plurality of metal layers in the multi-layer IC package, and the loops may be communicatively coupled with one or more vias. The multi-layer IC package may comprise ferromagnetic and/or ferromagnetic materials.
摘要:
A method for wireless communication may include, in an RF chip including transmit and receive functions, performing generating a first signal to enable transmission and/or reception of Bluetooth signals. The first signal may be input to a plurality of direct digital frequency synthesizers (DDFSs). The plurality of DDFSs may be clocked via the generated first signal to enable simultaneous transmission and reception of frequency modulated (FM) signals, and to enable transmission and/or reception of near field communication (NFC) signals. The first signal may be generated via a local oscillator generator (LOGEN) to enable the transmission and/or reception of the Bluetooth signals. The first signal may be generated via a phase locked loop (PLL) to enable the transmission and/or reception of the Bluetooth signals.
摘要:
A method for regulating power in a front-end circuit, the method includes determining, along a first communication path, an envelope of a baseband signal; generating at least one voltage control signal based on the determined envelope of the baseband signal; and adjusting one or both of power and/or gain of the front-end circuit using the generated at least one voltage control signal. The baseband signal is communicated to the front-end circuit using a second communication path. Signal delay along the second communication path is matched with signal delay along the first communication path. The at least one voltage control signal comprises a supply voltage signal and a bias voltage signal. The power of the front-end circuit may be adjusted using the supply voltage signal. The gain of the front-end circuit may be adjusted using the bias voltage signal.
摘要:
Aspects of a method and system for compensating for using a transmitter to calibrate a receiver for channel equalization are provided. Various embodiments of the invention may be applicable wireless devices in TDM systems, Bluetooth, and/or WLAN applications, for example. Transmit tones may be generated by a transmitter PLL and the baseband response may be measured for each of the injected tones. The tones may be swept over a frequency range and a corresponding oscillator signal may be mixed with the received signal to determine the response of, for example, the receiver filters. Adjusting any of a plurality of receiver and/or transmitter parameters based on baseband measurements may provide appropriate channel compensation or calibration. Accordingly, the baseband circuitry may generate equalization signals, which may be utilized to adjust receiver and/or transmitter circuitry. This approach may be provide I/Q balancing and transmit filtering calibration after receiver calibration is completed.
摘要:
Aspects of a method and system for on-demand linearity in a receiver are provided. In this regard, in a receiver such as on-chip receiver, a strength of a signal received by one or more antennas may be measured and linearity of the receiver may be controlled in response to the measured signal strength. The linearity may be controlled based on signal strength of in-band and/or out-of-band signals and by configuring component(s) of the receiver. Exemplary components may comprise one or more filter, amplifier, mixer, analog-to-digital converter, feedback loop, and equalizer and/or post corrector. Linearity may be increased, by switching one or more feedback loops and/or an equalizers and/or post correctors into a signal path of the receiver. Power consumption may be decreased, at the expense of reduced linearity, by switching one or more feedback loops and/or an equalizers and/or post correctors out of a signal path of the receiver.
摘要:
Aspects of a method and system for inter-PCB communications with wireline control may include setting up a microwave communication link between a first PCB and a second PCB via a wireline communication bus. The initialization may comprise adjusting beamforming parameters of a first antenna array communicatively coupled to the first PCB, and of a second antenna array communicatively coupled to the second PCB. The first PCB and the second PCB may communicate data via the microwave communication link. The microwave communication link may be routed via one or more relay PCBs, when the first PCB and the second PCB cannot directly communicate satisfactorily. Control data may be transferred between the first PCB, the second PCB, and/or the one or more relay PCBs, which may comprise one or more antennas. The relay PCBs may be dedicated relay PCBs or multi-purpose transmitter/receivers.
摘要:
A method for regulating power in a front-end circuit, the method includes determining, along a first communication path, an envelope of a baseband signal; generating at least one voltage control signal based on the determined envelope of the baseband signal; and adjusting one or both of power and/or gain of the front-end circuit using the generated at least one voltage control signal. The baseband signal is communicated to the front-end circuit using a second communication path. Signal delay along the second communication path is matched with signal delay along the first communication path. The at least one voltage control signal comprises a supply voltage signal and a bias voltage signal. The power of the front-end circuit may be adjusted using the supply voltage signal. The gain of the front-end circuit may be adjusted using the bias voltage signal.
摘要:
Aspects of a method and system for portable data storage with an integrated 60 GHz radio may include establishing a microwave communication link between a wireless portable storage device and a wireless transmitter and/or wireless receiver. Beamforming parameters of a first antenna array coupled to said wireless portable storage device and a second antenna array coupled to said wireless transmitter and/or wireless receiver may be adjusted automatically and/or dynamically. The wireless portable storage and the wireless transmitter and/or wireless receiver may exchange data via said first antenna array and said second antenna array. A secondary wireless communication link may be established to initialize the establishing of the microwave communication link. The secondary wireless communication link may be established via Bluetooth protocol. The wireless portable storage and the wireless transmitter and/or wireless receiver may receive and transmit in the 60 GHz frequency band.
摘要:
Methods and systems for a 60 GHz communication device comprising multi-location antennas for pseudo-beamforming are disclosed and may include configuring antennas in RF modules for beamforming transmitted signals. Each of the RF modules may receive IF signals via coaxial lines. The beamformed RF signals may be transmitted via the antennas to external devices. The RF signals may be generated from IF signals from baseband signals. The RF modules may be configured utilizing a processor in the wireless communication device. The RF signals may be transmitted to a display device. Control signals for the RF devices may be communicated utilizing the coaxial lines. The RF devices may be selected for the beamforming based on a direction to a receiving device. The beamforming may include adding a phase shift in upconverting the IF signals to the RF signals, which may include 60 GHz signals.